AutorÃa | Ultima modificación | Ver Log |
<?phpnamespace PhpOffice\PhpSpreadsheet\Shared\Trend;abstract class BestFit{/*** Indicator flag for a calculation error.** @var bool*/protected $error = false;/*** Algorithm type to use for best-fit.** @var string*/protected $bestFitType = 'undetermined';/*** Number of entries in the sets of x- and y-value arrays.** @var int*/protected $valueCount = 0;/*** X-value dataseries of values.** @var float[]*/protected $xValues = [];/*** Y-value dataseries of values.** @var float[]*/protected $yValues = [];/*** Flag indicating whether values should be adjusted to Y=0.** @var bool*/protected $adjustToZero = false;/*** Y-value series of best-fit values.** @var float[]*/protected $yBestFitValues = [];/** @var float */protected $goodnessOfFit = 1;/** @var float */protected $stdevOfResiduals = 0;/** @var float */protected $covariance = 0;/** @var float */protected $correlation = 0;/** @var float */protected $SSRegression = 0;/** @var float */protected $SSResiduals = 0;/** @var float */protected $DFResiduals = 0;/** @var float */protected $f = 0;/** @var float */protected $slope = 0;/** @var float */protected $slopeSE = 0;/** @var float */protected $intersect = 0;/** @var float */protected $intersectSE = 0;/** @var float */protected $xOffset = 0;/** @var float */protected $yOffset = 0;/** @return bool */public function getError(){return $this->error;}/** @return string */public function getBestFitType(){return $this->bestFitType;}/*** Return the Y-Value for a specified value of X.** @param float $xValue X-Value** @return float Y-Value*/abstract public function getValueOfYForX($xValue);/*** Return the X-Value for a specified value of Y.** @param float $yValue Y-Value** @return float X-Value*/abstract public function getValueOfXForY($yValue);/*** Return the original set of X-Values.** @return float[] X-Values*/public function getXValues(){return $this->xValues;}/*** Return the Equation of the best-fit line.** @param int $dp Number of places of decimal precision to display** @return string*/abstract public function getEquation($dp = 0);/*** Return the Slope of the line.** @param int $dp Number of places of decimal precision to display** @return float*/public function getSlope($dp = 0){if ($dp != 0) {return round($this->slope, $dp);}return $this->slope;}/*** Return the standard error of the Slope.** @param int $dp Number of places of decimal precision to display** @return float*/public function getSlopeSE($dp = 0){if ($dp != 0) {return round($this->slopeSE, $dp);}return $this->slopeSE;}/*** Return the Value of X where it intersects Y = 0.** @param int $dp Number of places of decimal precision to display** @return float*/public function getIntersect($dp = 0){if ($dp != 0) {return round($this->intersect, $dp);}return $this->intersect;}/*** Return the standard error of the Intersect.** @param int $dp Number of places of decimal precision to display** @return float*/public function getIntersectSE($dp = 0){if ($dp != 0) {return round($this->intersectSE, $dp);}return $this->intersectSE;}/*** Return the goodness of fit for this regression.** @param int $dp Number of places of decimal precision to return** @return float*/public function getGoodnessOfFit($dp = 0){if ($dp != 0) {return round($this->goodnessOfFit, $dp);}return $this->goodnessOfFit;}/*** Return the goodness of fit for this regression.** @param int $dp Number of places of decimal precision to return** @return float*/public function getGoodnessOfFitPercent($dp = 0){if ($dp != 0) {return round($this->goodnessOfFit * 100, $dp);}return $this->goodnessOfFit * 100;}/*** Return the standard deviation of the residuals for this regression.** @param int $dp Number of places of decimal precision to return** @return float*/public function getStdevOfResiduals($dp = 0){if ($dp != 0) {return round($this->stdevOfResiduals, $dp);}return $this->stdevOfResiduals;}/*** @param int $dp Number of places of decimal precision to return** @return float*/public function getSSRegression($dp = 0){if ($dp != 0) {return round($this->SSRegression, $dp);}return $this->SSRegression;}/*** @param int $dp Number of places of decimal precision to return** @return float*/public function getSSResiduals($dp = 0){if ($dp != 0) {return round($this->SSResiduals, $dp);}return $this->SSResiduals;}/*** @param int $dp Number of places of decimal precision to return** @return float*/public function getDFResiduals($dp = 0){if ($dp != 0) {return round($this->DFResiduals, $dp);}return $this->DFResiduals;}/*** @param int $dp Number of places of decimal precision to return** @return float*/public function getF($dp = 0){if ($dp != 0) {return round($this->f, $dp);}return $this->f;}/*** @param int $dp Number of places of decimal precision to return** @return float*/public function getCovariance($dp = 0){if ($dp != 0) {return round($this->covariance, $dp);}return $this->covariance;}/*** @param int $dp Number of places of decimal precision to return** @return float*/public function getCorrelation($dp = 0){if ($dp != 0) {return round($this->correlation, $dp);}return $this->correlation;}/*** @return float[]*/public function getYBestFitValues(){return $this->yBestFitValues;}/** @var mixed */private static $scrutinizerZeroPointZero = 0.0;/*** @param mixed $x* @param mixed $y*/private static function scrutinizerLooseCompare($x, $y): bool{return $x == $y;}/*** @param float $sumX* @param float $sumY* @param float $sumX2* @param float $sumY2* @param float $sumXY* @param float $meanX* @param float $meanY* @param bool|int $const*/protected function calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const): void{$SSres = $SScov = $SStot = $SSsex = 0.0;foreach ($this->xValues as $xKey => $xValue) {$bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);$SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY);if ($const === true) {$SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY);} else {$SStot += $this->yValues[$xKey] * $this->yValues[$xKey];}$SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY);if ($const === true) {$SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX);} else {$SSsex += $this->xValues[$xKey] * $this->xValues[$xKey];}}$this->SSResiduals = $SSres;$this->DFResiduals = $this->valueCount - 1 - ($const === true ? 1 : 0);if ($this->DFResiduals == 0.0) {$this->stdevOfResiduals = 0.0;} else {$this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals);}// Scrutinizer thinks $SSres == $SStot is always true. It is wrong.if ($SStot == self::$scrutinizerZeroPointZero || self::scrutinizerLooseCompare($SSres, $SStot)) {$this->goodnessOfFit = 1;} else {$this->goodnessOfFit = 1 - ($SSres / $SStot);}$this->SSRegression = $this->goodnessOfFit * $SStot;$this->covariance = $SScov / $this->valueCount;$this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - $sumX ** 2) * ($this->valueCount * $sumY2 - $sumY ** 2));$this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex);$this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2));if ($this->SSResiduals != 0.0) {if ($this->DFResiduals == 0.0) {$this->f = 0.0;} else {$this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals);}} else {if ($this->DFResiduals == 0.0) {$this->f = 0.0;} else {$this->f = $this->SSRegression / $this->DFResiduals;}}}/** @return float|int */private function sumSquares(array $values){return array_sum(array_map(function ($value) {return $value ** 2;},$values));}/*** @param float[] $yValues* @param float[] $xValues*/protected function leastSquareFit(array $yValues, array $xValues, bool $const): void{// calculate sums$sumValuesX = array_sum($xValues);$sumValuesY = array_sum($yValues);$meanValueX = $sumValuesX / $this->valueCount;$meanValueY = $sumValuesY / $this->valueCount;$sumSquaresX = $this->sumSquares($xValues);$sumSquaresY = $this->sumSquares($yValues);$mBase = $mDivisor = 0.0;$xy_sum = 0.0;for ($i = 0; $i < $this->valueCount; ++$i) {$xy_sum += $xValues[$i] * $yValues[$i];if ($const === true) {$mBase += ($xValues[$i] - $meanValueX) * ($yValues[$i] - $meanValueY);$mDivisor += ($xValues[$i] - $meanValueX) * ($xValues[$i] - $meanValueX);} else {$mBase += $xValues[$i] * $yValues[$i];$mDivisor += $xValues[$i] * $xValues[$i];}}// calculate slope$this->slope = $mBase / $mDivisor;// calculate intersect$this->intersect = ($const === true) ? $meanValueY - ($this->slope * $meanValueX) : 0.0;$this->calculateGoodnessOfFit($sumValuesX, $sumValuesY, $sumSquaresX, $sumSquaresY, $xy_sum, $meanValueX, $meanValueY, $const);}/*** Define the regression.** @param float[] $yValues The set of Y-values for this regression* @param float[] $xValues The set of X-values for this regression*/public function __construct($yValues, $xValues = []){// Calculate number of points$yValueCount = count($yValues);$xValueCount = count($xValues);// Define X Values if necessaryif ($xValueCount === 0) {$xValues = range(1, $yValueCount);} elseif ($yValueCount !== $xValueCount) {// Ensure both arrays of points are the same size$this->error = true;}$this->valueCount = $yValueCount;$this->xValues = $xValues;$this->yValues = $yValues;}}