AutorÃa | Ultima modificación | Ver Log |
<?phpnamespace PhpOffice\PhpSpreadsheet\Shared\Trend;class LinearBestFit extends BestFit{/*** Algorithm type to use for best-fit* (Name of this Trend class).*/protected string $bestFitType = 'linear';/*** Return the Y-Value for a specified value of X.** @param float $xValue X-Value** @return float Y-Value*/public function getValueOfYForX(float $xValue): float{return $this->getIntersect() + $this->getSlope() * $xValue;}/*** Return the X-Value for a specified value of Y.** @param float $yValue Y-Value** @return float X-Value*/public function getValueOfXForY(float $yValue): float{return ($yValue - $this->getIntersect()) / $this->getSlope();}/*** Return the Equation of the best-fit line.** @param int $dp Number of places of decimal precision to display*/public function getEquation(int $dp = 0): string{$slope = $this->getSlope($dp);$intersect = $this->getIntersect($dp);return 'Y = ' . $intersect . ' + ' . $slope . ' * X';}/*** Execute the regression and calculate the goodness of fit for a set of X and Y data values.** @param float[] $yValues The set of Y-values for this regression* @param float[] $xValues The set of X-values for this regression*/private function linearRegression(array $yValues, array $xValues, bool $const): void{$this->leastSquareFit($yValues, $xValues, $const);}/*** Define the regression and calculate the goodness of fit for a set of X and Y data values.** @param float[] $yValues The set of Y-values for this regression* @param float[] $xValues The set of X-values for this regression*/public function __construct(array $yValues, array $xValues = [], bool $const = true){parent::__construct($yValues, $xValues);if (!$this->error) {$this->linearRegression($yValues, $xValues, (bool) $const);}}}