AutorÃa | Ultima modificación | Ver Log |
<?phpnamespace PhpOffice\PhpSpreadsheet\Shared\Trend;class ExponentialBestFit extends BestFit{/*** Algorithm type to use for best-fit* (Name of this Trend class).*/protected string $bestFitType = 'exponential';/*** Return the Y-Value for a specified value of X.** @param float $xValue X-Value** @return float Y-Value*/public function getValueOfYForX(float $xValue): float{return $this->getIntersect() * $this->getSlope() ** ($xValue - $this->xOffset);}/*** Return the X-Value for a specified value of Y.** @param float $yValue Y-Value** @return float X-Value*/public function getValueOfXForY(float $yValue): float{return log(($yValue + $this->yOffset) / $this->getIntersect()) / log($this->getSlope());}/*** Return the Equation of the best-fit line.** @param int $dp Number of places of decimal precision to display*/public function getEquation(int $dp = 0): string{$slope = $this->getSlope($dp);$intersect = $this->getIntersect($dp);return 'Y = ' . $intersect . ' * ' . $slope . '^X';}/*** Return the Slope of the line.** @param int $dp Number of places of decimal precision to display*/public function getSlope(int $dp = 0): float{if ($dp != 0) {return round(exp($this->slope), $dp);}return exp($this->slope);}/*** Return the Value of X where it intersects Y = 0.** @param int $dp Number of places of decimal precision to display*/public function getIntersect(int $dp = 0): float{if ($dp != 0) {return round(exp($this->intersect), $dp);}return exp($this->intersect);}/*** Execute the regression and calculate the goodness of fit for a set of X and Y data values.** @param float[] $yValues The set of Y-values for this regression* @param float[] $xValues The set of X-values for this regression*/private function exponentialRegression(array $yValues, array $xValues, bool $const): void{$adjustedYValues = array_map(fn ($value): float => ($value < 0.0) ? 0 - log(abs($value)) : log($value),$yValues);$this->leastSquareFit($adjustedYValues, $xValues, $const);}/*** Define the regression and calculate the goodness of fit for a set of X and Y data values.** @param float[] $yValues The set of Y-values for this regression* @param float[] $xValues The set of X-values for this regression*/public function __construct(array $yValues, array $xValues = [], bool $const = true){parent::__construct($yValues, $xValues);if (!$this->error) {$this->exponentialRegression($yValues, $xValues, (bool) $const);}}}