AutorÃa | Ultima modificación | Ver Log |
<?phpnamespace PhpOffice\PhpSpreadsheet\Shared\Trend;abstract class BestFit{/*** Indicator flag for a calculation error.*/protected bool $error = false;/*** Algorithm type to use for best-fit.*/protected string $bestFitType = 'undetermined';/*** Number of entries in the sets of x- and y-value arrays.*/protected int $valueCount;/*** X-value dataseries of values.** @var float[]*/protected array $xValues = [];/*** Y-value dataseries of values.** @var float[]*/protected array $yValues = [];/*** Flag indicating whether values should be adjusted to Y=0.*/protected bool $adjustToZero = false;/*** Y-value series of best-fit values.** @var float[]*/protected array $yBestFitValues = [];protected float $goodnessOfFit = 1;protected float $stdevOfResiduals = 0;protected float $covariance = 0;protected float $correlation = 0;protected float $SSRegression = 0;protected float $SSResiduals = 0;protected float $DFResiduals = 0;protected float $f = 0;protected float $slope = 0;protected float $slopeSE = 0;protected float $intersect = 0;protected float $intersectSE = 0;protected float $xOffset = 0;protected float $yOffset = 0;public function getError(): bool{return $this->error;}public function getBestFitType(): string{return $this->bestFitType;}/*** Return the Y-Value for a specified value of X.** @param float $xValue X-Value** @return float Y-Value*/abstract public function getValueOfYForX(float $xValue): float;/*** Return the X-Value for a specified value of Y.** @param float $yValue Y-Value** @return float X-Value*/abstract public function getValueOfXForY(float $yValue): float;/*** Return the original set of X-Values.** @return float[] X-Values*/public function getXValues(): array{return $this->xValues;}/*** Return the Equation of the best-fit line.** @param int $dp Number of places of decimal precision to display*/abstract public function getEquation(int $dp = 0): string;/*** Return the Slope of the line.** @param int $dp Number of places of decimal precision to display*/public function getSlope(int $dp = 0): float{if ($dp != 0) {return round($this->slope, $dp);}return $this->slope;}/*** Return the standard error of the Slope.** @param int $dp Number of places of decimal precision to display*/public function getSlopeSE(int $dp = 0): float{if ($dp != 0) {return round($this->slopeSE, $dp);}return $this->slopeSE;}/*** Return the Value of X where it intersects Y = 0.** @param int $dp Number of places of decimal precision to display*/public function getIntersect(int $dp = 0): float{if ($dp != 0) {return round($this->intersect, $dp);}return $this->intersect;}/*** Return the standard error of the Intersect.** @param int $dp Number of places of decimal precision to display*/public function getIntersectSE(int $dp = 0): float{if ($dp != 0) {return round($this->intersectSE, $dp);}return $this->intersectSE;}/*** Return the goodness of fit for this regression.** @param int $dp Number of places of decimal precision to return*/public function getGoodnessOfFit(int $dp = 0): float{if ($dp != 0) {return round($this->goodnessOfFit, $dp);}return $this->goodnessOfFit;}/*** Return the goodness of fit for this regression.** @param int $dp Number of places of decimal precision to return*/public function getGoodnessOfFitPercent(int $dp = 0): float{if ($dp != 0) {return round($this->goodnessOfFit * 100, $dp);}return $this->goodnessOfFit * 100;}/*** Return the standard deviation of the residuals for this regression.** @param int $dp Number of places of decimal precision to return*/public function getStdevOfResiduals(int $dp = 0): float{if ($dp != 0) {return round($this->stdevOfResiduals, $dp);}return $this->stdevOfResiduals;}/*** @param int $dp Number of places of decimal precision to return*/public function getSSRegression(int $dp = 0): float{if ($dp != 0) {return round($this->SSRegression, $dp);}return $this->SSRegression;}/*** @param int $dp Number of places of decimal precision to return*/public function getSSResiduals(int $dp = 0): float{if ($dp != 0) {return round($this->SSResiduals, $dp);}return $this->SSResiduals;}/*** @param int $dp Number of places of decimal precision to return*/public function getDFResiduals(int $dp = 0): float{if ($dp != 0) {return round($this->DFResiduals, $dp);}return $this->DFResiduals;}/*** @param int $dp Number of places of decimal precision to return*/public function getF(int $dp = 0): float{if ($dp != 0) {return round($this->f, $dp);}return $this->f;}/*** @param int $dp Number of places of decimal precision to return*/public function getCovariance(int $dp = 0): float{if ($dp != 0) {return round($this->covariance, $dp);}return $this->covariance;}/*** @param int $dp Number of places of decimal precision to return*/public function getCorrelation(int $dp = 0): float{if ($dp != 0) {return round($this->correlation, $dp);}return $this->correlation;}/*** @return float[]*/public function getYBestFitValues(): array{return $this->yBestFitValues;}protected function calculateGoodnessOfFit(float $sumX, float $sumY, float $sumX2, float $sumY2, float $sumXY, float $meanX, float $meanY, bool|int $const): void{$SSres = $SScov = $SStot = $SSsex = 0.0;foreach ($this->xValues as $xKey => $xValue) {$bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);$SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY);if ($const === true) {$SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY);} else {$SStot += $this->yValues[$xKey] * $this->yValues[$xKey];}$SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY);if ($const === true) {$SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX);} else {$SSsex += $this->xValues[$xKey] * $this->xValues[$xKey];}}$this->SSResiduals = $SSres;$this->DFResiduals = $this->valueCount - 1 - ($const === true ? 1 : 0);if ($this->DFResiduals == 0.0) {$this->stdevOfResiduals = 0.0;} else {$this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals);}if ($SStot == 0.0 || $SSres == $SStot) {$this->goodnessOfFit = 1;} else {$this->goodnessOfFit = 1 - ($SSres / $SStot);}$this->SSRegression = $this->goodnessOfFit * $SStot;$this->covariance = $SScov / $this->valueCount;$this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - $sumX ** 2) * ($this->valueCount * $sumY2 - $sumY ** 2));$this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex);$this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2));if ($this->SSResiduals != 0.0) {if ($this->DFResiduals == 0.0) {$this->f = 0.0;} else {$this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals);}} else {if ($this->DFResiduals == 0.0) {$this->f = 0.0;} else {$this->f = $this->SSRegression / $this->DFResiduals;}}}/** @return float|int */private function sumSquares(array $values){return array_sum(array_map(fn ($value): float|int => $value ** 2,$values));}/*** @param float[] $yValues* @param float[] $xValues*/protected function leastSquareFit(array $yValues, array $xValues, bool $const): void{// calculate sums$sumValuesX = array_sum($xValues);$sumValuesY = array_sum($yValues);$meanValueX = $sumValuesX / $this->valueCount;$meanValueY = $sumValuesY / $this->valueCount;$sumSquaresX = $this->sumSquares($xValues);$sumSquaresY = $this->sumSquares($yValues);$mBase = $mDivisor = 0.0;$xy_sum = 0.0;for ($i = 0; $i < $this->valueCount; ++$i) {$xy_sum += $xValues[$i] * $yValues[$i];if ($const === true) {$mBase += ($xValues[$i] - $meanValueX) * ($yValues[$i] - $meanValueY);$mDivisor += ($xValues[$i] - $meanValueX) * ($xValues[$i] - $meanValueX);} else {$mBase += $xValues[$i] * $yValues[$i];$mDivisor += $xValues[$i] * $xValues[$i];}}// calculate slope$this->slope = $mBase / $mDivisor;// calculate intersect$this->intersect = ($const === true) ? $meanValueY - ($this->slope * $meanValueX) : 0.0;$this->calculateGoodnessOfFit($sumValuesX, $sumValuesY, $sumSquaresX, $sumSquaresY, $xy_sum, $meanValueX, $meanValueY, $const);}/*** Define the regression.** @param float[] $yValues The set of Y-values for this regression* @param float[] $xValues The set of X-values for this regression*/public function __construct(array $yValues, array $xValues = []){// Calculate number of points$yValueCount = count($yValues);$xValueCount = count($xValues);// Define X Values if necessaryif ($xValueCount === 0) {$xValues = range(1, $yValueCount);} elseif ($yValueCount !== $xValueCount) {// Ensure both arrays of points are the same size$this->error = true;}$this->valueCount = $yValueCount;$this->xValues = $xValues;$this->yValues = $yValues;}}