AutorÃa | Ultima modificación | Ver Log |
<?phpnamespace PhpOffice\PhpSpreadsheet\Calculation\Statistical;use PhpOffice\PhpSpreadsheet\Calculation\ArrayEnabled;use PhpOffice\PhpSpreadsheet\Calculation\Exception;use PhpOffice\PhpSpreadsheet\Calculation\Functions;use PhpOffice\PhpSpreadsheet\Calculation\Information\ExcelError;use PhpOffice\PhpSpreadsheet\Shared\Trend\Trend;class Trends{use ArrayEnabled;private static function filterTrendValues(array &$array1, array &$array2): void{foreach ($array1 as $key => $value) {if ((is_bool($value)) || (is_string($value)) || ($value === null)) {unset($array1[$key], $array2[$key]);}}}/*** @param mixed $array1 should be array, but scalar is made into one* @param mixed $array2 should be array, but scalar is made into one*/private static function checkTrendArrays(mixed &$array1, mixed &$array2): void{if (!is_array($array1)) {$array1 = [$array1];}if (!is_array($array2)) {$array2 = [$array2];}$array1 = Functions::flattenArray($array1);$array2 = Functions::flattenArray($array2);self::filterTrendValues($array1, $array2);self::filterTrendValues($array2, $array1);// Reset the array indexes$array1 = array_merge($array1);$array2 = array_merge($array2);}protected static function validateTrendArrays(array $yValues, array $xValues): void{$yValueCount = count($yValues);$xValueCount = count($xValues);if (($yValueCount === 0) || ($yValueCount !== $xValueCount)) {throw new Exception(ExcelError::NA());} elseif ($yValueCount === 1) {throw new Exception(ExcelError::DIV0());}}/*** CORREL.** Returns covariance, the average of the products of deviations for each data point pair.** @param mixed $yValues array of mixed Data Series Y* @param null|mixed $xValues array of mixed Data Series X*/public static function CORREL(mixed $yValues, $xValues = null): float|string{if (($xValues === null) || (!is_array($yValues)) || (!is_array($xValues))) {return ExcelError::VALUE();}try {self::checkTrendArrays($yValues, $xValues);self::validateTrendArrays($yValues, $xValues);} catch (Exception $e) {return $e->getMessage();}$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);return $bestFitLinear->getCorrelation();}/*** COVAR.** Returns covariance, the average of the products of deviations for each data point pair.** @param mixed[] $yValues array of mixed Data Series Y* @param mixed[] $xValues array of mixed Data Series X*/public static function COVAR(array $yValues, array $xValues): float|string{try {self::checkTrendArrays($yValues, $xValues);self::validateTrendArrays($yValues, $xValues);} catch (Exception $e) {return $e->getMessage();}$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);return $bestFitLinear->getCovariance();}/*** FORECAST.** Calculates, or predicts, a future value by using existing values.* The predicted value is a y-value for a given x-value.** @param mixed $xValue Float value of X for which we want to find Y* Or can be an array of values* @param mixed[] $yValues array of mixed Data Series Y* @param mixed[] $xValues array of mixed Data Series X** @return array|bool|float|string If an array of numbers is passed as an argument, then the returned result will also be an array* with the same dimensions*/public static function FORECAST(mixed $xValue, array $yValues, array $xValues){if (is_array($xValue)) {return self::evaluateArrayArgumentsSubset([self::class, __FUNCTION__], 1, $xValue, $yValues, $xValues);}try {$xValue = StatisticalValidations::validateFloat($xValue);self::checkTrendArrays($yValues, $xValues);self::validateTrendArrays($yValues, $xValues);} catch (Exception $e) {return $e->getMessage();}$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);return $bestFitLinear->getValueOfYForX($xValue);}/*** GROWTH.** Returns values along a predicted exponential Trend** @param mixed[] $yValues Data Series Y* @param mixed[] $xValues Data Series X* @param mixed[] $newValues Values of X for which we want to find Y* @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not** @return array<int, array<int, array<int, float>>>*/public static function GROWTH(array $yValues, array $xValues = [], array $newValues = [], mixed $const = true): array{$yValues = Functions::flattenArray($yValues);$xValues = Functions::flattenArray($xValues);$newValues = Functions::flattenArray($newValues);$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);$bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const);if (empty($newValues)) {$newValues = $bestFitExponential->getXValues();}$returnArray = [];foreach ($newValues as $xValue) {$returnArray[0][] = [$bestFitExponential->getValueOfYForX($xValue)];}return $returnArray;}/*** INTERCEPT.** Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values.** @param mixed[] $yValues Data Series Y* @param mixed[] $xValues Data Series X*/public static function INTERCEPT(array $yValues, array $xValues): float|string{try {self::checkTrendArrays($yValues, $xValues);self::validateTrendArrays($yValues, $xValues);} catch (Exception $e) {return $e->getMessage();}$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);return $bestFitLinear->getIntersect();}/*** LINEST.** Calculates the statistics for a line by using the "least squares" method to calculate a straight line* that best fits your data, and then returns an array that describes the line.** @param mixed[] $yValues Data Series Y* @param null|mixed[] $xValues Data Series X* @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not* @param mixed $stats A logical (boolean) value specifying whether to return additional regression statistics** @return array|string The result, or a string containing an error*/public static function LINEST(array $yValues, ?array $xValues = null, mixed $const = true, mixed $stats = false): string|array{$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);$stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats);if ($xValues === null) {$xValues = $yValues;}try {self::checkTrendArrays($yValues, $xValues);self::validateTrendArrays($yValues, $xValues);} catch (Exception $e) {return $e->getMessage();}$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const);if ($stats === true) {return [[$bestFitLinear->getSlope(),$bestFitLinear->getIntersect(),],[$bestFitLinear->getSlopeSE(),($const === false) ? ExcelError::NA() : $bestFitLinear->getIntersectSE(),],[$bestFitLinear->getGoodnessOfFit(),$bestFitLinear->getStdevOfResiduals(),],[$bestFitLinear->getF(),$bestFitLinear->getDFResiduals(),],[$bestFitLinear->getSSRegression(),$bestFitLinear->getSSResiduals(),],];}return [$bestFitLinear->getSlope(),$bestFitLinear->getIntersect(),];}/*** LOGEST.** Calculates an exponential curve that best fits the X and Y data series,* and then returns an array that describes the line.** @param mixed[] $yValues Data Series Y* @param null|mixed[] $xValues Data Series X* @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not* @param mixed $stats A logical (boolean) value specifying whether to return additional regression statistics** @return array|string The result, or a string containing an error*/public static function LOGEST(array $yValues, ?array $xValues = null, mixed $const = true, mixed $stats = false): string|array{$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);$stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats);if ($xValues === null) {$xValues = $yValues;}try {self::checkTrendArrays($yValues, $xValues);self::validateTrendArrays($yValues, $xValues);} catch (Exception $e) {return $e->getMessage();}foreach ($yValues as $value) {if ($value < 0.0) {return ExcelError::NAN();}}$bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const);if ($stats === true) {return [[$bestFitExponential->getSlope(),$bestFitExponential->getIntersect(),],[$bestFitExponential->getSlopeSE(),($const === false) ? ExcelError::NA() : $bestFitExponential->getIntersectSE(),],[$bestFitExponential->getGoodnessOfFit(),$bestFitExponential->getStdevOfResiduals(),],[$bestFitExponential->getF(),$bestFitExponential->getDFResiduals(),],[$bestFitExponential->getSSRegression(),$bestFitExponential->getSSResiduals(),],];}return [$bestFitExponential->getSlope(),$bestFitExponential->getIntersect(),];}/*** RSQ.** Returns the square of the Pearson product moment correlation coefficient through data points* in known_y's and known_x's.** @param mixed[] $yValues Data Series Y* @param mixed[] $xValues Data Series X** @return float|string The result, or a string containing an error*/public static function RSQ(array $yValues, array $xValues){try {self::checkTrendArrays($yValues, $xValues);self::validateTrendArrays($yValues, $xValues);} catch (Exception $e) {return $e->getMessage();}$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);return $bestFitLinear->getGoodnessOfFit();}/*** SLOPE.** Returns the slope of the linear regression line through data points in known_y's and known_x's.** @param mixed[] $yValues Data Series Y* @param mixed[] $xValues Data Series X** @return float|string The result, or a string containing an error*/public static function SLOPE(array $yValues, array $xValues){try {self::checkTrendArrays($yValues, $xValues);self::validateTrendArrays($yValues, $xValues);} catch (Exception $e) {return $e->getMessage();}$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);return $bestFitLinear->getSlope();}/*** STEYX.** Returns the standard error of the predicted y-value for each x in the regression.** @param mixed[] $yValues Data Series Y* @param mixed[] $xValues Data Series X*/public static function STEYX(array $yValues, array $xValues): float|string{try {self::checkTrendArrays($yValues, $xValues);self::validateTrendArrays($yValues, $xValues);} catch (Exception $e) {return $e->getMessage();}$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues);return $bestFitLinear->getStdevOfResiduals();}/*** TREND.** Returns values along a linear Trend** @param mixed[] $yValues Data Series Y* @param mixed[] $xValues Data Series X* @param mixed[] $newValues Values of X for which we want to find Y* @param mixed $const A logical (boolean) value specifying whether to force the intersect to equal 0 or not** @return array<int, array<int, array<int, float>>>*/public static function TREND(array $yValues, array $xValues = [], array $newValues = [], mixed $const = true): array{$yValues = Functions::flattenArray($yValues);$xValues = Functions::flattenArray($xValues);$newValues = Functions::flattenArray($newValues);$const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const);$bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const);if (empty($newValues)) {$newValues = $bestFitLinear->getXValues();}$returnArray = [];foreach ($newValues as $xValue) {$returnArray[0][] = [$bestFitLinear->getValueOfYForX($xValue)];}return $returnArray;}}