Autoría | Ultima modificación | Ver Log |
<?phpdeclare(strict_types=1);namespace Phpml\Helper\Optimizer;use Closure;/*** Conjugate Gradient method to solve a non-linear f(x) with respect to unknown x* See https://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method)** The method applied below is explained in the below document in a practical manner* - http://web.cs.iastate.edu/~cs577/handouts/conjugate-gradient.pdf** However it is compliant with the general Conjugate Gradient method with* Fletcher-Reeves update method. Note that, the f(x) is assumed to be one-dimensional* and one gradient is utilized for all dimensions in the given data.*/class ConjugateGradient extends GD{public function runOptimization(array $samples, array $targets, Closure $gradientCb): array{$this->samples = $samples;$this->targets = $targets;$this->gradientCb = $gradientCb;$this->sampleCount = count($samples);$this->costValues = [];$d = MP::muls($this->gradient($this->theta), -1);for ($i = 0; $i < $this->maxIterations; ++$i) {// Obtain α that minimizes f(θ + α.d)$alpha = $this->getAlpha($d);// θ(k+1) = θ(k) + α.d$thetaNew = $this->getNewTheta($alpha, $d);// β = ||∇f(x(k+1))||² ∕ ||∇f(x(k))||²$beta = $this->getBeta($thetaNew);// d(k+1) =–∇f(x(k+1)) + β(k).d(k)$d = $this->getNewDirection($thetaNew, $beta, $d);// Save values for the next iteration$oldTheta = $this->theta;$this->costValues[] = $this->cost($thetaNew);$this->theta = $thetaNew;if ($this->enableEarlyStop && $this->earlyStop($oldTheta)) {break;}}$this->clear();return $this->theta;}/*** Executes the callback function for the problem and returns* sum of the gradient for all samples & targets.*/protected function gradient(array $theta): array{[, $updates, $penalty] = parent::gradient($theta);// Calculate gradient for each dimension$gradient = [];for ($i = 0; $i <= $this->dimensions; ++$i) {if ($i === 0) {$gradient[$i] = array_sum($updates);} else {$col = array_column($this->samples, $i - 1);$error = 0;foreach ($col as $index => $val) {$error += $val * $updates[$index];}$gradient[$i] = $error + $penalty * $theta[$i];}}return $gradient;}/*** Returns the value of f(x) for given solution*/protected function cost(array $theta): float{[$cost] = parent::gradient($theta);return array_sum($cost) / (int) $this->sampleCount;}/*** Calculates alpha that minimizes the function f(θ + α.d)* by performing a line search that does not rely upon the derivation.** There are several alternatives for this function. For now, we* prefer a method inspired from the bisection method for its simplicity.* This algorithm attempts to find an optimum alpha value between 0.0001 and 0.01** Algorithm as follows:* a) Probe a small alpha (0.0001) and calculate cost function* b) Probe a larger alpha (0.01) and calculate cost function* b-1) If cost function decreases, continue enlarging alpha* b-2) If cost function increases, take the midpoint and try again*/protected function getAlpha(array $d): float{$small = MP::muls($d, 0.0001);$large = MP::muls($d, 0.01);// Obtain θ + α.d for two initial values, x0 and x1$x0 = MP::add($this->theta, $small);$x1 = MP::add($this->theta, $large);$epsilon = 0.0001;$iteration = 0;do {$fx1 = $this->cost($x1);$fx0 = $this->cost($x0);// If the difference between two values is small enough// then break the loopif (abs($fx1 - $fx0) <= $epsilon) {break;}if ($fx1 < $fx0) {$x0 = $x1;$x1 = MP::adds($x1, 0.01); // Enlarge second} else {$x1 = MP::divs(MP::add($x1, $x0), 2.0);} // Get to the midpoint$error = $fx1 / $this->dimensions;} while ($error <= $epsilon || $iteration++ < 10);// Return α = θ / d// For accuracy, choose a dimension which maximize |d[i]|$imax = 0;for ($i = 1; $i <= $this->dimensions; ++$i) {if (abs($d[$i]) > abs($d[$imax])) {$imax = $i;}}if ($d[$imax] == 0) {return $x1[$imax] - $this->theta[$imax];}return ($x1[$imax] - $this->theta[$imax]) / $d[$imax];}/*** Calculates new set of solutions with given alpha (for each θ(k)) and* gradient direction.** θ(k+1) = θ(k) + α.d*/protected function getNewTheta(float $alpha, array $d): array{return MP::add($this->theta, MP::muls($d, $alpha));}/*** Calculates new beta (β) for given set of solutions by using* Fletcher–Reeves method.** β = ||f(x(k+1))||² ∕ ||f(x(k))||²** See:* R. Fletcher and C. M. Reeves, "Function minimization by conjugate gradients", Comput. J. 7 (1964), 149–154.*/protected function getBeta(array $newTheta): float{$gNew = $this->gradient($newTheta);$gOld = $this->gradient($this->theta);$dNew = 0;$dOld = 1e-100;for ($i = 0; $i <= $this->dimensions; ++$i) {$dNew += $gNew[$i] ** 2;$dOld += $gOld[$i] ** 2;}return $dNew / $dOld;}/*** Calculates the new conjugate direction** d(k+1) =–∇f(x(k+1)) + β(k).d(k)*/protected function getNewDirection(array $theta, float $beta, array $d): array{$grad = $this->gradient($theta);return MP::add(MP::muls($grad, -1), MP::muls($d, $beta));}}/*** Handles element-wise vector operations between vector-vector* and vector-scalar variables*/class MP{/*** Element-wise <b>multiplication</b> of two vectors of the same size*/public static function mul(array $m1, array $m2): array{$res = [];foreach ($m1 as $i => $val) {$res[] = $val * $m2[$i];}return $res;}/*** Element-wise <b>division</b> of two vectors of the same size*/public static function div(array $m1, array $m2): array{$res = [];foreach ($m1 as $i => $val) {$res[] = $val / $m2[$i];}return $res;}/*** Element-wise <b>addition</b> of two vectors of the same size*/public static function add(array $m1, array $m2, int $mag = 1): array{$res = [];foreach ($m1 as $i => $val) {$res[] = $val + $mag * $m2[$i];}return $res;}/*** Element-wise <b>subtraction</b> of two vectors of the same size*/public static function sub(array $m1, array $m2): array{return self::add($m1, $m2, -1);}/*** Element-wise <b>multiplication</b> of a vector with a scalar*/public static function muls(array $m1, float $m2): array{$res = [];foreach ($m1 as $val) {$res[] = $val * $m2;}return $res;}/*** Element-wise <b>division</b> of a vector with a scalar*/public static function divs(array $m1, float $m2): array{$res = [];foreach ($m1 as $val) {$res[] = $val / ($m2 + 1e-32);}return $res;}/*** Element-wise <b>addition</b> of a vector with a scalar*/public static function adds(array $m1, float $m2, int $mag = 1): array{$res = [];foreach ($m1 as $val) {$res[] = $val + $mag * $m2;}return $res;}/*** Element-wise <b>subtraction</b> of a vector with a scalar*/public static function subs(array $m1, float $m2): array{return self::adds($m1, $m2, -1);}}