AutorÃa | Ultima modificación | Ver Log |
// Copyright 2019 Google
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "Crashlytics/Crashlytics/Unwind/FIRCLSUnwind.h"
#include "Crashlytics/Crashlytics/Components/FIRCLSBinaryImage.h"
#include "Crashlytics/Crashlytics/Unwind/Compact/FIRCLSCompactUnwind.h"
#include "Crashlytics/Crashlytics/Helpers/FIRCLSFeatures.h"
#include "Crashlytics/Crashlytics/Components/FIRCLSGlobals.h"
#include "Crashlytics/Crashlytics/Helpers/FIRCLSUtility.h"
#include <mach/mach.h>
#include <signal.h>
#include <stdio.h>
// Without a limit on the number of frames we unwind, there's a real possibility
// we'll get stuck in an infinite loop. But, we still need pretty big limits,
// because stacks can get quite big. Also, the stacks are different on the platforms.
// These values were empirically determined (~525000 on OS X, ~65000 on iOS).
#if TARGET_OS_EMBEDDED
const uint32_t FIRCLSUnwindMaxFrames = 100000;
#else
const uint32_t FIRCLSUnwindMaxFrames = 600000;
#endif
const uint32_t FIRCLSUnwindInfiniteRecursionCountThreshold = 10;
#pragma mark Prototypes
static bool FIRCLSUnwindNextFrameUsingAllStrategies(FIRCLSUnwindContext* context);
#if CLS_COMPACT_UNWINDING_SUPPORTED
static bool FIRCLSUnwindWithCompactUnwindInfo(FIRCLSUnwindContext* context);
#endif
bool FIRCLSUnwindContextHasValidPCAndSP(FIRCLSUnwindContext* context);
#pragma mark - API
bool FIRCLSUnwindInit(FIRCLSUnwindContext* context, FIRCLSThreadContext threadContext) {
if (!context) {
return false;
}
memset(context, 0, sizeof(FIRCLSUnwindContext));
context->registers = threadContext;
return true;
}
bool FIRCLSUnwindNextFrame(FIRCLSUnwindContext* context) {
if (!FIRCLSIsValidPointer(context)) {
FIRCLSSDKLog("Error: invalid inputs\n");
return false;
}
if (!FIRCLSUnwindContextHasValidPCAndSP(context)) {
// This is a special-case. It is possible to try to unwind a thread that has no stack (ie, is
// executing zero functions. I believe this happens when a thread has exited, but before the
// kernel has actually cleaned it up. This situation can only apply to the first frame. So, in
// that case, we don't count it as an error. But, if it happens mid-unwind, it's a problem.
if (context->frameCount == 0) {
FIRCLSSDKLog("Cancelling unwind for thread with invalid PC/SP\n");
} else {
FIRCLSSDKLog("Error: thread PC/SP invalid before unwind\n");
}
return false;
}
if (!FIRCLSUnwindNextFrameUsingAllStrategies(context)) {
FIRCLSSDKLogError("Failed to advance to the next frame\n");
return false;
}
uintptr_t pc = FIRCLSUnwindGetPC(context);
uintptr_t sp = FIRCLSUnwindGetStackPointer(context);
// Unwinding will complete when this is no longer a valid value
if (!FIRCLSIsValidPointer(pc)) {
return false;
}
// after unwinding, validate that we have a sane register value
if (!FIRCLSIsValidPointer(sp)) {
FIRCLSSDKLog("Error: SP (%p) isn't a valid pointer\n", (void*)sp);
return false;
}
// track repeating frames
if (context->lastFramePC == pc) {
context->repeatCount += 1;
} else {
context->repeatCount = 0;
}
context->frameCount += 1;
context->lastFramePC = pc;
return true;
}
#pragma mark - Register Accessors
uintptr_t FIRCLSUnwindGetPC(FIRCLSUnwindContext* context) {
if (!FIRCLSIsValidPointer(context)) {
return 0;
}
return FIRCLSThreadContextGetPC(&context->registers);
}
uintptr_t FIRCLSUnwindGetStackPointer(FIRCLSUnwindContext* context) {
if (!FIRCLSIsValidPointer(context)) {
return 0;
}
return FIRCLSThreadContextGetStackPointer(&context->registers);
}
static uintptr_t FIRCLSUnwindGetFramePointer(FIRCLSUnwindContext* context) {
if (!FIRCLSIsValidPointer(context)) {
return 0;
}
return FIRCLSThreadContextGetFramePointer(&context->registers);
}
uint32_t FIRCLSUnwindGetFrameRepeatCount(FIRCLSUnwindContext* context) {
if (!FIRCLSIsValidPointer(context)) {
return 0;
}
return context->repeatCount;
}
#pragma mark - Unwind Strategies
static bool FIRCLSUnwindNextFrameUsingAllStrategies(FIRCLSUnwindContext* context) {
if (!FIRCLSIsValidPointer(context)) {
FIRCLSSDKLogError("Arguments invalid\n");
return false;
}
if (context->frameCount >= FIRCLSUnwindMaxFrames) {
FIRCLSSDKLogWarn("Exceeded maximum number of frames\n");
return false;
}
uintptr_t pc = FIRCLSUnwindGetPC(context);
// Ok, what's going on here? libunwind's UnwindCursor<A,R>::setInfoBasedOnIPRegister has a
// parameter that, if true, does this subtraction. Despite the comments in the code
// (of 35.1), I found that the parameter was almost always set to true.
//
// I then ran into a problem when unwinding from _pthread_start -> thread_start. This
// is a common transition, which happens in pretty much every report. An extra frame
// was being generated, because the PC we get for _pthread_start was mapping to exactly
// one greater than the function's last byte, according to the compact unwind info. This
// resulted in using the wrong compact encoding, and picking the next function, which
// turned out to be dwarf instead of a frame pointer.
// So, the moral is - do the subtraction for all frames except the first. I haven't found
// a case where it produces an incorrect result. Also note that at first, I thought this would
// subtract one from the final addresses too. But, the end of this function will *compute* PC,
// so this value is used only to look up unwinding data.
if (context->frameCount > 0) {
--pc;
if (!FIRCLSThreadContextSetPC(&context->registers, pc)) {
FIRCLSSDKLogError("Unable to set PC\n");
return false;
}
}
if (!FIRCLSIsValidPointer(pc)) {
FIRCLSSDKLogError("PC is invalid\n");
return false;
}
// the first frame is special - as the registers we need
// are already loaded by definition
if (context->frameCount == 0) {
return true;
}
#if CLS_COMPACT_UNWINDING_SUPPORTED
// attempt to advance to the next frame using compact unwinding, and
// only fall back to the frame pointer if that fails
if (FIRCLSUnwindWithCompactUnwindInfo(context)) {
return true;
}
#endif
// If the frame pointer is zero, we cannot use an FP-based unwind and we can reasonably
// assume that we've just gotten to the end of the stack.
if (FIRCLSUnwindGetFramePointer(context) == 0) {
FIRCLSSDKLogWarn("FP is zero, aborting unwind\n");
// make sure to set the PC to zero, to indicate the unwind is complete
return FIRCLSThreadContextSetPC(&context->registers, 0);
}
// Only allow stack scanning (as a last resort) if we're on the first frame. All others
// are too likely to screw up.
if (FIRCLSUnwindWithFramePointer(&context->registers, context->frameCount == 1)) {
return true;
}
FIRCLSSDKLogError("Unable to use frame pointer\n");
return false;
}
#if CLS_COMPACT_UNWINDING_SUPPORTED
static bool FIRCLSUnwindWithCompactUnwindInfo(FIRCLSUnwindContext* context) {
if (!context) {
return false;
}
// step one - find the image the current pc is within
FIRCLSBinaryImageRuntimeNode image;
uintptr_t pc = FIRCLSUnwindGetPC(context);
if (!FIRCLSBinaryImageSafeFindImageForAddress(pc, &image)) {
FIRCLSSDKLogWarn("Unable to find binary for %p\n", (void*)pc);
return false;
}
#if CLS_BINARY_IMAGE_RUNTIME_NODE_RECORD_NAME
FIRCLSSDKLogDebug("Binary image for %p at %p => %s\n", (void*)pc, image.baseAddress, image.name);
#else
FIRCLSSDKLogDebug("Binary image for %p at %p\n", (void*)pc, image.baseAddress);
#endif
if (!FIRCLSBinaryImageSafeHasUnwindInfo(&image)) {
FIRCLSSDKLogInfo("Binary image at %p has no unwind info\n", image.baseAddress);
return false;
}
if (!FIRCLSCompactUnwindInit(&context->compactUnwindState, image.unwindInfo, image.ehFrame,
(uintptr_t)image.baseAddress)) {
FIRCLSSDKLogError("Unable to read unwind info\n");
return false;
}
// this function will actually attempt to find compact unwind info for the current PC,
// and use it to mutate the context register state
return FIRCLSCompactUnwindLookupAndCompute(&context->compactUnwindState, &context->registers);
}
#endif
#pragma mark - Utility Functions
bool FIRCLSUnwindContextHasValidPCAndSP(FIRCLSUnwindContext* context) {
return FIRCLSIsValidPointer(FIRCLSUnwindGetPC(context)) &&
FIRCLSIsValidPointer(FIRCLSUnwindGetStackPointer(context));
}
#if CLS_CPU_64BIT
#define BASIC_INFO_TYPE vm_region_basic_info_64_t
#define BASIC_INFO VM_REGION_BASIC_INFO_64
#define BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
#define vm_region_query_fn vm_region_64
#else
#define BASIC_INFO_TYPE vm_region_basic_info_t
#define BASIC_INFO VM_REGION_BASIC_INFO
#define BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT
#define vm_region_query_fn vm_region
#endif
bool FIRCLSUnwindIsAddressExecutable(vm_address_t address) {
#if CLS_COMPACT_UNWINDING_SUPPORTED
FIRCLSBinaryImageRuntimeNode unusedNode;
return FIRCLSBinaryImageSafeFindImageForAddress(address, &unusedNode);
#else
return true;
#endif
}
bool FIRCLSUnwindFirstExecutableAddress(vm_address_t start,
vm_address_t end,
vm_address_t* foundAddress) {
// This function walks up the data on the stack, looking for the first value that is an address on
// an exectuable page. This is a heurestic, and can hit false positives.
*foundAddress = 0; // write in a 0
do {
vm_address_t address;
FIRCLSSDKLogDebug("Checking address %p => %p\n", (void*)start, (void*)*(uintptr_t*)start);
// if start isn't a valid pointer, don't even bother trying
if (FIRCLSIsValidPointer(start)) {
if (!FIRCLSReadMemory(start, &address, sizeof(void*))) {
// if we fail to read from the stack, we're done
return false;
}
FIRCLSSDKLogDebug("Checking for executable %p\n", (void*)address);
// when we find an exectuable address, we're finished
if (FIRCLSUnwindIsAddressExecutable(address)) {
*foundAddress = address;
return true;
}
}
start += sizeof(void*); // move back up the stack
} while (start < end);
return false;
}