| 1441 |
ariadna |
1 |
<?php
|
|
|
2 |
|
|
|
3 |
namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
|
|
|
4 |
|
|
|
5 |
use Matrix\Matrix;
|
|
|
6 |
|
|
|
7 |
// Phpstan and Scrutinizer seem to have legitimate complaints.
|
|
|
8 |
// $this->slope is specified where an array is expected in several places.
|
|
|
9 |
// But it seems that it should always be float.
|
|
|
10 |
// This code is probably not exercised at all in unit tests.
|
|
|
11 |
class PolynomialBestFit extends BestFit
|
|
|
12 |
{
|
|
|
13 |
/**
|
|
|
14 |
* Algorithm type to use for best-fit
|
|
|
15 |
* (Name of this Trend class).
|
|
|
16 |
*/
|
|
|
17 |
protected string $bestFitType = 'polynomial';
|
|
|
18 |
|
|
|
19 |
/**
|
|
|
20 |
* Polynomial order.
|
|
|
21 |
*/
|
|
|
22 |
protected int $order = 0;
|
|
|
23 |
|
|
|
24 |
/**
|
|
|
25 |
* Return the order of this polynomial.
|
|
|
26 |
*/
|
|
|
27 |
public function getOrder(): int
|
|
|
28 |
{
|
|
|
29 |
return $this->order;
|
|
|
30 |
}
|
|
|
31 |
|
|
|
32 |
/**
|
|
|
33 |
* Return the Y-Value for a specified value of X.
|
|
|
34 |
*
|
|
|
35 |
* @param float $xValue X-Value
|
|
|
36 |
*
|
|
|
37 |
* @return float Y-Value
|
|
|
38 |
*/
|
|
|
39 |
public function getValueOfYForX(float $xValue): float
|
|
|
40 |
{
|
|
|
41 |
$retVal = $this->getIntersect();
|
|
|
42 |
$slope = $this->getSlope();
|
|
|
43 |
// Phpstan and Scrutinizer are both correct - getSlope returns float, not array.
|
|
|
44 |
// @phpstan-ignore-next-line
|
|
|
45 |
foreach ($slope as $key => $value) {
|
|
|
46 |
if ($value != 0.0) {
|
|
|
47 |
$retVal += $value * $xValue ** ($key + 1);
|
|
|
48 |
}
|
|
|
49 |
}
|
|
|
50 |
|
|
|
51 |
return $retVal;
|
|
|
52 |
}
|
|
|
53 |
|
|
|
54 |
/**
|
|
|
55 |
* Return the X-Value for a specified value of Y.
|
|
|
56 |
*
|
|
|
57 |
* @param float $yValue Y-Value
|
|
|
58 |
*
|
|
|
59 |
* @return float X-Value
|
|
|
60 |
*/
|
|
|
61 |
public function getValueOfXForY(float $yValue): float
|
|
|
62 |
{
|
|
|
63 |
return ($yValue - $this->getIntersect()) / $this->getSlope();
|
|
|
64 |
}
|
|
|
65 |
|
|
|
66 |
/**
|
|
|
67 |
* Return the Equation of the best-fit line.
|
|
|
68 |
*
|
|
|
69 |
* @param int $dp Number of places of decimal precision to display
|
|
|
70 |
*/
|
|
|
71 |
public function getEquation(int $dp = 0): string
|
|
|
72 |
{
|
|
|
73 |
$slope = $this->getSlope($dp);
|
|
|
74 |
$intersect = $this->getIntersect($dp);
|
|
|
75 |
|
|
|
76 |
$equation = 'Y = ' . $intersect;
|
|
|
77 |
// Phpstan and Scrutinizer are both correct - getSlope returns float, not array.
|
|
|
78 |
// @phpstan-ignore-next-line
|
|
|
79 |
foreach ($slope as $key => $value) {
|
|
|
80 |
if ($value != 0.0) {
|
|
|
81 |
$equation .= ' + ' . $value . ' * X';
|
|
|
82 |
if ($key > 0) {
|
|
|
83 |
$equation .= '^' . ($key + 1);
|
|
|
84 |
}
|
|
|
85 |
}
|
|
|
86 |
}
|
|
|
87 |
|
|
|
88 |
return $equation;
|
|
|
89 |
}
|
|
|
90 |
|
|
|
91 |
/**
|
|
|
92 |
* Return the Slope of the line.
|
|
|
93 |
*
|
|
|
94 |
* @param int $dp Number of places of decimal precision to display
|
|
|
95 |
*/
|
|
|
96 |
public function getSlope(int $dp = 0): float
|
|
|
97 |
{
|
|
|
98 |
if ($dp != 0) {
|
|
|
99 |
$coefficients = [];
|
|
|
100 |
//* @phpstan-ignore-next-line
|
|
|
101 |
foreach ($this->slope as $coefficient) {
|
|
|
102 |
$coefficients[] = round($coefficient, $dp);
|
|
|
103 |
}
|
|
|
104 |
|
|
|
105 |
// @phpstan-ignore-next-line
|
|
|
106 |
return $coefficients;
|
|
|
107 |
}
|
|
|
108 |
|
|
|
109 |
return $this->slope;
|
|
|
110 |
}
|
|
|
111 |
|
|
|
112 |
public function getCoefficients(int $dp = 0): array
|
|
|
113 |
{
|
|
|
114 |
// Phpstan and Scrutinizer are both correct - getSlope returns float, not array.
|
|
|
115 |
// @phpstan-ignore-next-line
|
|
|
116 |
return array_merge([$this->getIntersect($dp)], $this->getSlope($dp));
|
|
|
117 |
}
|
|
|
118 |
|
|
|
119 |
/**
|
|
|
120 |
* Execute the regression and calculate the goodness of fit for a set of X and Y data values.
|
|
|
121 |
*
|
|
|
122 |
* @param int $order Order of Polynomial for this regression
|
|
|
123 |
* @param float[] $yValues The set of Y-values for this regression
|
|
|
124 |
* @param float[] $xValues The set of X-values for this regression
|
|
|
125 |
*/
|
|
|
126 |
private function polynomialRegression(int $order, array $yValues, array $xValues): void
|
|
|
127 |
{
|
|
|
128 |
// calculate sums
|
|
|
129 |
$x_sum = array_sum($xValues);
|
|
|
130 |
$y_sum = array_sum($yValues);
|
|
|
131 |
$xx_sum = $xy_sum = $yy_sum = 0;
|
|
|
132 |
for ($i = 0; $i < $this->valueCount; ++$i) {
|
|
|
133 |
$xy_sum += $xValues[$i] * $yValues[$i];
|
|
|
134 |
$xx_sum += $xValues[$i] * $xValues[$i];
|
|
|
135 |
$yy_sum += $yValues[$i] * $yValues[$i];
|
|
|
136 |
}
|
|
|
137 |
/*
|
|
|
138 |
* This routine uses logic from the PHP port of polyfit version 0.1
|
|
|
139 |
* written by Michael Bommarito and Paul Meagher
|
|
|
140 |
*
|
|
|
141 |
* The function fits a polynomial function of order $order through
|
|
|
142 |
* a series of x-y data points using least squares.
|
|
|
143 |
*
|
|
|
144 |
*/
|
|
|
145 |
$A = [];
|
|
|
146 |
$B = [];
|
|
|
147 |
for ($i = 0; $i < $this->valueCount; ++$i) {
|
|
|
148 |
for ($j = 0; $j <= $order; ++$j) {
|
|
|
149 |
$A[$i][$j] = $xValues[$i] ** $j;
|
|
|
150 |
}
|
|
|
151 |
}
|
|
|
152 |
for ($i = 0; $i < $this->valueCount; ++$i) {
|
|
|
153 |
$B[$i] = [$yValues[$i]];
|
|
|
154 |
}
|
|
|
155 |
$matrixA = new Matrix($A);
|
|
|
156 |
$matrixB = new Matrix($B);
|
|
|
157 |
$C = $matrixA->solve($matrixB);
|
|
|
158 |
|
|
|
159 |
$coefficients = [];
|
|
|
160 |
for ($i = 0; $i < $C->rows; ++$i) {
|
|
|
161 |
$r = $C->getValue($i + 1, 1); // row and column are origin-1
|
|
|
162 |
if (!is_numeric($r) || abs($r + 0) <= 10 ** (-9)) {
|
|
|
163 |
$r = 0;
|
|
|
164 |
} else {
|
|
|
165 |
$r += 0;
|
|
|
166 |
}
|
|
|
167 |
$coefficients[] = $r;
|
|
|
168 |
}
|
|
|
169 |
|
|
|
170 |
$this->intersect = (float) array_shift($coefficients);
|
|
|
171 |
// Phpstan is correct
|
|
|
172 |
//* @phpstan-ignore-next-line
|
|
|
173 |
$this->slope = $coefficients;
|
|
|
174 |
|
|
|
175 |
$this->calculateGoodnessOfFit($x_sum, $y_sum, $xx_sum, $yy_sum, $xy_sum, 0, 0, 0);
|
|
|
176 |
foreach ($this->xValues as $xKey => $xValue) {
|
|
|
177 |
$this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
|
|
|
178 |
}
|
|
|
179 |
}
|
|
|
180 |
|
|
|
181 |
/**
|
|
|
182 |
* Define the regression and calculate the goodness of fit for a set of X and Y data values.
|
|
|
183 |
*
|
|
|
184 |
* @param int $order Order of Polynomial for this regression
|
|
|
185 |
* @param float[] $yValues The set of Y-values for this regression
|
|
|
186 |
* @param float[] $xValues The set of X-values for this regression
|
|
|
187 |
*/
|
|
|
188 |
public function __construct(int $order, array $yValues, array $xValues = [])
|
|
|
189 |
{
|
|
|
190 |
parent::__construct($yValues, $xValues);
|
|
|
191 |
|
|
|
192 |
if (!$this->error) {
|
|
|
193 |
if ($order < $this->valueCount) {
|
|
|
194 |
$this->bestFitType .= '_' . $order;
|
|
|
195 |
$this->order = $order;
|
|
|
196 |
$this->polynomialRegression($order, $yValues, $xValues);
|
|
|
197 |
if (($this->getGoodnessOfFit() < 0.0) || ($this->getGoodnessOfFit() > 1.0)) {
|
|
|
198 |
$this->error = true;
|
|
|
199 |
}
|
|
|
200 |
} else {
|
|
|
201 |
$this->error = true;
|
|
|
202 |
}
|
|
|
203 |
}
|
|
|
204 |
}
|
|
|
205 |
}
|