Proyectos de Subversion Moodle

Rev

| Ultima modificación | Ver Log |

Rev Autor Línea Nro. Línea
1441 ariadna 1
<?php
2
 
3
namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
4
 
5
class LinearBestFit extends BestFit
6
{
7
    /**
8
     * Algorithm type to use for best-fit
9
     * (Name of this Trend class).
10
     */
11
    protected string $bestFitType = 'linear';
12
 
13
    /**
14
     * Return the Y-Value for a specified value of X.
15
     *
16
     * @param float $xValue X-Value
17
     *
18
     * @return float Y-Value
19
     */
20
    public function getValueOfYForX(float $xValue): float
21
    {
22
        return $this->getIntersect() + $this->getSlope() * $xValue;
23
    }
24
 
25
    /**
26
     * Return the X-Value for a specified value of Y.
27
     *
28
     * @param float $yValue Y-Value
29
     *
30
     * @return float X-Value
31
     */
32
    public function getValueOfXForY(float $yValue): float
33
    {
34
        return ($yValue - $this->getIntersect()) / $this->getSlope();
35
    }
36
 
37
    /**
38
     * Return the Equation of the best-fit line.
39
     *
40
     * @param int $dp Number of places of decimal precision to display
41
     */
42
    public function getEquation(int $dp = 0): string
43
    {
44
        $slope = $this->getSlope($dp);
45
        $intersect = $this->getIntersect($dp);
46
 
47
        return 'Y = ' . $intersect . ' + ' . $slope . ' * X';
48
    }
49
 
50
    /**
51
     * Execute the regression and calculate the goodness of fit for a set of X and Y data values.
52
     *
53
     * @param float[] $yValues The set of Y-values for this regression
54
     * @param float[] $xValues The set of X-values for this regression
55
     */
56
    private function linearRegression(array $yValues, array $xValues, bool $const): void
57
    {
58
        $this->leastSquareFit($yValues, $xValues, $const);
59
    }
60
 
61
    /**
62
     * Define the regression and calculate the goodness of fit for a set of X and Y data values.
63
     *
64
     * @param float[] $yValues The set of Y-values for this regression
65
     * @param float[] $xValues The set of X-values for this regression
66
     */
67
    public function __construct(array $yValues, array $xValues = [], bool $const = true)
68
    {
69
        parent::__construct($yValues, $xValues);
70
 
71
        if (!$this->error) {
72
            $this->linearRegression($yValues, $xValues, (bool) $const);
73
        }
74
    }
75
}