Proyectos de Subversion Moodle

Rev

| Ultima modificación | Ver Log |

Rev Autor Línea Nro. Línea
1441 ariadna 1
<?php
2
 
3
namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
4
 
5
abstract class BestFit
6
{
7
    /**
8
     * Indicator flag for a calculation error.
9
     */
10
    protected bool $error = false;
11
 
12
    /**
13
     * Algorithm type to use for best-fit.
14
     */
15
    protected string $bestFitType = 'undetermined';
16
 
17
    /**
18
     * Number of entries in the sets of x- and y-value arrays.
19
     */
20
    protected int $valueCount;
21
 
22
    /**
23
     * X-value dataseries of values.
24
     *
25
     * @var float[]
26
     */
27
    protected array $xValues = [];
28
 
29
    /**
30
     * Y-value dataseries of values.
31
     *
32
     * @var float[]
33
     */
34
    protected array $yValues = [];
35
 
36
    /**
37
     * Flag indicating whether values should be adjusted to Y=0.
38
     */
39
    protected bool $adjustToZero = false;
40
 
41
    /**
42
     * Y-value series of best-fit values.
43
     *
44
     * @var float[]
45
     */
46
    protected array $yBestFitValues = [];
47
 
48
    protected float $goodnessOfFit = 1;
49
 
50
    protected float $stdevOfResiduals = 0;
51
 
52
    protected float $covariance = 0;
53
 
54
    protected float $correlation = 0;
55
 
56
    protected float $SSRegression = 0;
57
 
58
    protected float $SSResiduals = 0;
59
 
60
    protected float $DFResiduals = 0;
61
 
62
    protected float $f = 0;
63
 
64
    protected float $slope = 0;
65
 
66
    protected float $slopeSE = 0;
67
 
68
    protected float $intersect = 0;
69
 
70
    protected float $intersectSE = 0;
71
 
72
    protected float $xOffset = 0;
73
 
74
    protected float $yOffset = 0;
75
 
76
    public function getError(): bool
77
    {
78
        return $this->error;
79
    }
80
 
81
    public function getBestFitType(): string
82
    {
83
        return $this->bestFitType;
84
    }
85
 
86
    /**
87
     * Return the Y-Value for a specified value of X.
88
     *
89
     * @param float $xValue X-Value
90
     *
91
     * @return float Y-Value
92
     */
93
    abstract public function getValueOfYForX(float $xValue): float;
94
 
95
    /**
96
     * Return the X-Value for a specified value of Y.
97
     *
98
     * @param float $yValue Y-Value
99
     *
100
     * @return float X-Value
101
     */
102
    abstract public function getValueOfXForY(float $yValue): float;
103
 
104
    /**
105
     * Return the original set of X-Values.
106
     *
107
     * @return float[] X-Values
108
     */
109
    public function getXValues(): array
110
    {
111
        return $this->xValues;
112
    }
113
 
114
    /**
115
     * Return the Equation of the best-fit line.
116
     *
117
     * @param int $dp Number of places of decimal precision to display
118
     */
119
    abstract public function getEquation(int $dp = 0): string;
120
 
121
    /**
122
     * Return the Slope of the line.
123
     *
124
     * @param int $dp Number of places of decimal precision to display
125
     */
126
    public function getSlope(int $dp = 0): float
127
    {
128
        if ($dp != 0) {
129
            return round($this->slope, $dp);
130
        }
131
 
132
        return $this->slope;
133
    }
134
 
135
    /**
136
     * Return the standard error of the Slope.
137
     *
138
     * @param int $dp Number of places of decimal precision to display
139
     */
140
    public function getSlopeSE(int $dp = 0): float
141
    {
142
        if ($dp != 0) {
143
            return round($this->slopeSE, $dp);
144
        }
145
 
146
        return $this->slopeSE;
147
    }
148
 
149
    /**
150
     * Return the Value of X where it intersects Y = 0.
151
     *
152
     * @param int $dp Number of places of decimal precision to display
153
     */
154
    public function getIntersect(int $dp = 0): float
155
    {
156
        if ($dp != 0) {
157
            return round($this->intersect, $dp);
158
        }
159
 
160
        return $this->intersect;
161
    }
162
 
163
    /**
164
     * Return the standard error of the Intersect.
165
     *
166
     * @param int $dp Number of places of decimal precision to display
167
     */
168
    public function getIntersectSE(int $dp = 0): float
169
    {
170
        if ($dp != 0) {
171
            return round($this->intersectSE, $dp);
172
        }
173
 
174
        return $this->intersectSE;
175
    }
176
 
177
    /**
178
     * Return the goodness of fit for this regression.
179
     *
180
     * @param int $dp Number of places of decimal precision to return
181
     */
182
    public function getGoodnessOfFit(int $dp = 0): float
183
    {
184
        if ($dp != 0) {
185
            return round($this->goodnessOfFit, $dp);
186
        }
187
 
188
        return $this->goodnessOfFit;
189
    }
190
 
191
    /**
192
     * Return the goodness of fit for this regression.
193
     *
194
     * @param int $dp Number of places of decimal precision to return
195
     */
196
    public function getGoodnessOfFitPercent(int $dp = 0): float
197
    {
198
        if ($dp != 0) {
199
            return round($this->goodnessOfFit * 100, $dp);
200
        }
201
 
202
        return $this->goodnessOfFit * 100;
203
    }
204
 
205
    /**
206
     * Return the standard deviation of the residuals for this regression.
207
     *
208
     * @param int $dp Number of places of decimal precision to return
209
     */
210
    public function getStdevOfResiduals(int $dp = 0): float
211
    {
212
        if ($dp != 0) {
213
            return round($this->stdevOfResiduals, $dp);
214
        }
215
 
216
        return $this->stdevOfResiduals;
217
    }
218
 
219
    /**
220
     * @param int $dp Number of places of decimal precision to return
221
     */
222
    public function getSSRegression(int $dp = 0): float
223
    {
224
        if ($dp != 0) {
225
            return round($this->SSRegression, $dp);
226
        }
227
 
228
        return $this->SSRegression;
229
    }
230
 
231
    /**
232
     * @param int $dp Number of places of decimal precision to return
233
     */
234
    public function getSSResiduals(int $dp = 0): float
235
    {
236
        if ($dp != 0) {
237
            return round($this->SSResiduals, $dp);
238
        }
239
 
240
        return $this->SSResiduals;
241
    }
242
 
243
    /**
244
     * @param int $dp Number of places of decimal precision to return
245
     */
246
    public function getDFResiduals(int $dp = 0): float
247
    {
248
        if ($dp != 0) {
249
            return round($this->DFResiduals, $dp);
250
        }
251
 
252
        return $this->DFResiduals;
253
    }
254
 
255
    /**
256
     * @param int $dp Number of places of decimal precision to return
257
     */
258
    public function getF(int $dp = 0): float
259
    {
260
        if ($dp != 0) {
261
            return round($this->f, $dp);
262
        }
263
 
264
        return $this->f;
265
    }
266
 
267
    /**
268
     * @param int $dp Number of places of decimal precision to return
269
     */
270
    public function getCovariance(int $dp = 0): float
271
    {
272
        if ($dp != 0) {
273
            return round($this->covariance, $dp);
274
        }
275
 
276
        return $this->covariance;
277
    }
278
 
279
    /**
280
     * @param int $dp Number of places of decimal precision to return
281
     */
282
    public function getCorrelation(int $dp = 0): float
283
    {
284
        if ($dp != 0) {
285
            return round($this->correlation, $dp);
286
        }
287
 
288
        return $this->correlation;
289
    }
290
 
291
    /**
292
     * @return float[]
293
     */
294
    public function getYBestFitValues(): array
295
    {
296
        return $this->yBestFitValues;
297
    }
298
 
299
    protected function calculateGoodnessOfFit(float $sumX, float $sumY, float $sumX2, float $sumY2, float $sumXY, float $meanX, float $meanY, bool|int $const): void
300
    {
301
        $SSres = $SScov = $SStot = $SSsex = 0.0;
302
        foreach ($this->xValues as $xKey => $xValue) {
303
            $bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
304
 
305
            $SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY);
306
            if ($const === true) {
307
                $SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY);
308
            } else {
309
                $SStot += $this->yValues[$xKey] * $this->yValues[$xKey];
310
            }
311
            $SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY);
312
            if ($const === true) {
313
                $SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX);
314
            } else {
315
                $SSsex += $this->xValues[$xKey] * $this->xValues[$xKey];
316
            }
317
        }
318
 
319
        $this->SSResiduals = $SSres;
320
        $this->DFResiduals = $this->valueCount - 1 - ($const === true ? 1 : 0);
321
 
322
        if ($this->DFResiduals == 0.0) {
323
            $this->stdevOfResiduals = 0.0;
324
        } else {
325
            $this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals);
326
        }
327
 
328
        if ($SStot == 0.0 || $SSres == $SStot) {
329
            $this->goodnessOfFit = 1;
330
        } else {
331
            $this->goodnessOfFit = 1 - ($SSres / $SStot);
332
        }
333
 
334
        $this->SSRegression = $this->goodnessOfFit * $SStot;
335
        $this->covariance = $SScov / $this->valueCount;
336
        $this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - $sumX ** 2) * ($this->valueCount * $sumY2 - $sumY ** 2));
337
        $this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex);
338
        $this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2));
339
        if ($this->SSResiduals != 0.0) {
340
            if ($this->DFResiduals == 0.0) {
341
                $this->f = 0.0;
342
            } else {
343
                $this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals);
344
            }
345
        } else {
346
            if ($this->DFResiduals == 0.0) {
347
                $this->f = 0.0;
348
            } else {
349
                $this->f = $this->SSRegression / $this->DFResiduals;
350
            }
351
        }
352
    }
353
 
354
    /** @return float|int */
355
    private function sumSquares(array $values)
356
    {
357
        return array_sum(
358
            array_map(
359
                fn ($value): float|int => $value ** 2,
360
                $values
361
            )
362
        );
363
    }
364
 
365
    /**
366
     * @param float[] $yValues
367
     * @param float[] $xValues
368
     */
369
    protected function leastSquareFit(array $yValues, array $xValues, bool $const): void
370
    {
371
        // calculate sums
372
        $sumValuesX = array_sum($xValues);
373
        $sumValuesY = array_sum($yValues);
374
        $meanValueX = $sumValuesX / $this->valueCount;
375
        $meanValueY = $sumValuesY / $this->valueCount;
376
        $sumSquaresX = $this->sumSquares($xValues);
377
        $sumSquaresY = $this->sumSquares($yValues);
378
        $mBase = $mDivisor = 0.0;
379
        $xy_sum = 0.0;
380
        for ($i = 0; $i < $this->valueCount; ++$i) {
381
            $xy_sum += $xValues[$i] * $yValues[$i];
382
 
383
            if ($const === true) {
384
                $mBase += ($xValues[$i] - $meanValueX) * ($yValues[$i] - $meanValueY);
385
                $mDivisor += ($xValues[$i] - $meanValueX) * ($xValues[$i] - $meanValueX);
386
            } else {
387
                $mBase += $xValues[$i] * $yValues[$i];
388
                $mDivisor += $xValues[$i] * $xValues[$i];
389
            }
390
        }
391
 
392
        // calculate slope
393
        $this->slope = $mBase / $mDivisor;
394
 
395
        // calculate intersect
396
        $this->intersect = ($const === true) ? $meanValueY - ($this->slope * $meanValueX) : 0.0;
397
 
398
        $this->calculateGoodnessOfFit($sumValuesX, $sumValuesY, $sumSquaresX, $sumSquaresY, $xy_sum, $meanValueX, $meanValueY, $const);
399
    }
400
 
401
    /**
402
     * Define the regression.
403
     *
404
     * @param float[] $yValues The set of Y-values for this regression
405
     * @param float[] $xValues The set of X-values for this regression
406
     */
407
    public function __construct(array $yValues, array $xValues = [])
408
    {
409
        //    Calculate number of points
410
        $yValueCount = count($yValues);
411
        $xValueCount = count($xValues);
412
 
413
        //    Define X Values if necessary
414
        if ($xValueCount === 0) {
415
            $xValues = range(1, $yValueCount);
416
        } elseif ($yValueCount !== $xValueCount) {
417
            //    Ensure both arrays of points are the same size
418
            $this->error = true;
419
        }
420
 
421
        $this->valueCount = $yValueCount;
422
        $this->xValues = $xValues;
423
        $this->yValues = $yValues;
424
    }
425
}