1441 |
ariadna |
1 |
<?php
|
|
|
2 |
|
|
|
3 |
namespace PhpOffice\PhpSpreadsheet\Calculation\Engineering;
|
|
|
4 |
|
|
|
5 |
use PhpOffice\PhpSpreadsheet\Calculation\ArrayEnabled;
|
|
|
6 |
use PhpOffice\PhpSpreadsheet\Calculation\Exception;
|
|
|
7 |
use PhpOffice\PhpSpreadsheet\Calculation\Information\ExcelError;
|
|
|
8 |
|
|
|
9 |
class BesselY
|
|
|
10 |
{
|
|
|
11 |
use ArrayEnabled;
|
|
|
12 |
|
|
|
13 |
/**
|
|
|
14 |
* BESSELY.
|
|
|
15 |
*
|
|
|
16 |
* Returns the Bessel function, which is also called the Weber function or the Neumann function.
|
|
|
17 |
*
|
|
|
18 |
* Excel Function:
|
|
|
19 |
* BESSELY(x,ord)
|
|
|
20 |
*
|
|
|
21 |
* @param mixed $x A float value at which to evaluate the function.
|
|
|
22 |
* If x is nonnumeric, BESSELY returns the #VALUE! error value.
|
|
|
23 |
* Or can be an array of values
|
|
|
24 |
* @param mixed $ord The integer order of the Bessel function.
|
|
|
25 |
* If ord is not an integer, it is truncated.
|
|
|
26 |
* If $ord is nonnumeric, BESSELY returns the #VALUE! error value.
|
|
|
27 |
* If $ord < 0, BESSELY returns the #NUM! error value.
|
|
|
28 |
* Or can be an array of values
|
|
|
29 |
*
|
|
|
30 |
* @return array|float|string Result, or a string containing an error
|
|
|
31 |
* If an array of numbers is passed as an argument, then the returned result will also be an array
|
|
|
32 |
* with the same dimensions
|
|
|
33 |
*/
|
|
|
34 |
public static function BESSELY(mixed $x, mixed $ord): array|string|float
|
|
|
35 |
{
|
|
|
36 |
if (is_array($x) || is_array($ord)) {
|
|
|
37 |
return self::evaluateArrayArguments([self::class, __FUNCTION__], $x, $ord);
|
|
|
38 |
}
|
|
|
39 |
|
|
|
40 |
try {
|
|
|
41 |
$x = EngineeringValidations::validateFloat($x);
|
|
|
42 |
$ord = EngineeringValidations::validateInt($ord);
|
|
|
43 |
} catch (Exception $e) {
|
|
|
44 |
return $e->getMessage();
|
|
|
45 |
}
|
|
|
46 |
|
|
|
47 |
if (($ord < 0) || ($x <= 0.0)) {
|
|
|
48 |
return ExcelError::NAN();
|
|
|
49 |
}
|
|
|
50 |
|
|
|
51 |
$fBy = self::calculate($x, $ord);
|
|
|
52 |
|
|
|
53 |
return (is_nan($fBy)) ? ExcelError::NAN() : $fBy;
|
|
|
54 |
}
|
|
|
55 |
|
|
|
56 |
private static function calculate(float $x, int $ord): float
|
|
|
57 |
{
|
|
|
58 |
return match ($ord) {
|
|
|
59 |
|
|
|
60 |
1 => self::besselY1($x),
|
|
|
61 |
default => self::besselY2($x, $ord),
|
|
|
62 |
};
|
|
|
63 |
}
|
|
|
64 |
|
|
|
65 |
/**
|
|
|
66 |
* Mollify Phpstan.
|
|
|
67 |
*
|
|
|
68 |
* @codeCoverageIgnore
|
|
|
69 |
*/
|
|
|
70 |
private static function callBesselJ(float $x, int $ord): float
|
|
|
71 |
{
|
|
|
72 |
$rslt = BesselJ::BESSELJ($x, $ord);
|
|
|
73 |
if (!is_float($rslt)) {
|
|
|
74 |
throw new Exception('Unexpected array or string');
|
|
|
75 |
}
|
|
|
76 |
|
|
|
77 |
return $rslt;
|
|
|
78 |
}
|
|
|
79 |
|
|
|
80 |
private static function besselY0(float $x): float
|
|
|
81 |
{
|
|
|
82 |
if ($x < 8.0) {
|
|
|
83 |
$y = ($x * $x);
|
|
|
84 |
$ans1 = -2957821389.0 + $y * (7062834065.0 + $y * (-512359803.6 + $y * (10879881.29 + $y
|
|
|
85 |
* (-86327.92757 + $y * 228.4622733))));
|
|
|
86 |
$ans2 = 40076544269.0 + $y * (745249964.8 + $y * (7189466.438 + $y
|
|
|
87 |
* (47447.26470 + $y * (226.1030244 + $y))));
|
|
|
88 |
|
|
|
89 |
return $ans1 / $ans2 + 0.636619772 * self::callBesselJ($x, 0) * log($x);
|
|
|
90 |
}
|
|
|
91 |
|
|
|
92 |
$z = 8.0 / $x;
|
|
|
93 |
$y = ($z * $z);
|
|
|
94 |
$xx = $x - 0.785398164;
|
|
|
95 |
$ans1 = 1 + $y * (-0.1098628627e-2 + $y * (0.2734510407e-4 + $y * (-0.2073370639e-5 + $y * 0.2093887211e-6)));
|
|
|
96 |
$ans2 = -0.1562499995e-1 + $y * (0.1430488765e-3 + $y * (-0.6911147651e-5 + $y * (0.7621095161e-6 + $y
|
|
|
97 |
* (-0.934945152e-7))));
|
|
|
98 |
|
|
|
99 |
return sqrt(0.636619772 / $x) * (sin($xx) * $ans1 + $z * cos($xx) * $ans2);
|
|
|
100 |
}
|
|
|
101 |
|
|
|
102 |
private static function besselY1(float $x): float
|
|
|
103 |
{
|
|
|
104 |
if ($x < 8.0) {
|
|
|
105 |
$y = ($x * $x);
|
|
|
106 |
$ans1 = $x * (-0.4900604943e13 + $y * (0.1275274390e13 + $y * (-0.5153438139e11 + $y
|
|
|
107 |
* (0.7349264551e9 + $y * (-0.4237922726e7 + $y * 0.8511937935e4)))));
|
|
|
108 |
$ans2 = 0.2499580570e14 + $y * (0.4244419664e12 + $y * (0.3733650367e10 + $y * (0.2245904002e8 + $y
|
|
|
109 |
* (0.1020426050e6 + $y * (0.3549632885e3 + $y)))));
|
|
|
110 |
|
|
|
111 |
return ($ans1 / $ans2) + 0.636619772 * (self::callBesselJ($x, 1) * log($x) - 1 / $x);
|
|
|
112 |
}
|
|
|
113 |
|
|
|
114 |
$z = 8.0 / $x;
|
|
|
115 |
$y = $z * $z;
|
|
|
116 |
$xx = $x - 2.356194491;
|
|
|
117 |
$ans1 = 1.0 + $y * (0.183105e-2 + $y * (-0.3516396496e-4 + $y * (0.2457520174e-5 + $y * (-0.240337019e-6))));
|
|
|
118 |
$ans2 = 0.04687499995 + $y * (-0.2002690873e-3 + $y * (0.8449199096e-5 + $y
|
|
|
119 |
* (-0.88228987e-6 + $y * 0.105787412e-6)));
|
|
|
120 |
|
|
|
121 |
return sqrt(0.636619772 / $x) * (sin($xx) * $ans1 + $z * cos($xx) * $ans2);
|
|
|
122 |
}
|
|
|
123 |
|
|
|
124 |
private static function besselY2(float $x, int $ord): float
|
|
|
125 |
{
|
|
|
126 |
$fTox = 2.0 / $x;
|
|
|
127 |
$fBym = self::besselY0($x);
|
|
|
128 |
$fBy = self::besselY1($x);
|
|
|
129 |
for ($n = 1; $n < $ord; ++$n) {
|
|
|
130 |
$fByp = $n * $fTox * $fBy - $fBym;
|
|
|
131 |
$fBym = $fBy;
|
|
|
132 |
$fBy = $fByp;
|
|
|
133 |
}
|
|
|
134 |
|
|
|
135 |
return $fBy;
|
|
|
136 |
}
|
|
|
137 |
}
|