| 1 |
efrain |
1 |
<?php
|
|
|
2 |
|
|
|
3 |
declare(strict_types=1);
|
|
|
4 |
|
|
|
5 |
namespace Phpml\NeuralNetwork\Network;
|
|
|
6 |
|
|
|
7 |
use Phpml\Estimator;
|
|
|
8 |
use Phpml\Exception\InvalidArgumentException;
|
|
|
9 |
use Phpml\Helper\Predictable;
|
|
|
10 |
use Phpml\IncrementalEstimator;
|
|
|
11 |
use Phpml\NeuralNetwork\ActivationFunction;
|
|
|
12 |
use Phpml\NeuralNetwork\ActivationFunction\Sigmoid;
|
|
|
13 |
use Phpml\NeuralNetwork\Layer;
|
|
|
14 |
use Phpml\NeuralNetwork\Node\Bias;
|
|
|
15 |
use Phpml\NeuralNetwork\Node\Input;
|
|
|
16 |
use Phpml\NeuralNetwork\Node\Neuron;
|
|
|
17 |
use Phpml\NeuralNetwork\Node\Neuron\Synapse;
|
|
|
18 |
use Phpml\NeuralNetwork\Training\Backpropagation;
|
|
|
19 |
|
|
|
20 |
abstract class MultilayerPerceptron extends LayeredNetwork implements Estimator, IncrementalEstimator
|
|
|
21 |
{
|
|
|
22 |
use Predictable;
|
|
|
23 |
|
|
|
24 |
/**
|
|
|
25 |
* @var array
|
|
|
26 |
*/
|
|
|
27 |
protected $classes = [];
|
|
|
28 |
|
|
|
29 |
/**
|
|
|
30 |
* @var ActivationFunction|null
|
|
|
31 |
*/
|
|
|
32 |
protected $activationFunction;
|
|
|
33 |
|
|
|
34 |
/**
|
|
|
35 |
* @var Backpropagation
|
|
|
36 |
*/
|
|
|
37 |
protected $backpropagation;
|
|
|
38 |
|
|
|
39 |
/**
|
|
|
40 |
* @var int
|
|
|
41 |
*/
|
|
|
42 |
private $inputLayerFeatures;
|
|
|
43 |
|
|
|
44 |
/**
|
|
|
45 |
* @var array
|
|
|
46 |
*/
|
|
|
47 |
private $hiddenLayers = [];
|
|
|
48 |
|
|
|
49 |
/**
|
|
|
50 |
* @var float
|
|
|
51 |
*/
|
|
|
52 |
private $learningRate;
|
|
|
53 |
|
|
|
54 |
/**
|
|
|
55 |
* @var int
|
|
|
56 |
*/
|
|
|
57 |
private $iterations;
|
|
|
58 |
|
|
|
59 |
/**
|
|
|
60 |
* @throws InvalidArgumentException
|
|
|
61 |
*/
|
|
|
62 |
public function __construct(
|
|
|
63 |
int $inputLayerFeatures,
|
|
|
64 |
array $hiddenLayers,
|
|
|
65 |
array $classes,
|
|
|
66 |
int $iterations = 10000,
|
|
|
67 |
?ActivationFunction $activationFunction = null,
|
|
|
68 |
float $learningRate = 1.
|
|
|
69 |
) {
|
|
|
70 |
if (count($hiddenLayers) === 0) {
|
|
|
71 |
throw new InvalidArgumentException('Provide at least 1 hidden layer');
|
|
|
72 |
}
|
|
|
73 |
|
|
|
74 |
if (count($classes) < 2) {
|
|
|
75 |
throw new InvalidArgumentException('Provide at least 2 different classes');
|
|
|
76 |
}
|
|
|
77 |
|
|
|
78 |
if (count($classes) !== count(array_unique($classes))) {
|
|
|
79 |
throw new InvalidArgumentException('Classes must be unique');
|
|
|
80 |
}
|
|
|
81 |
|
|
|
82 |
$this->classes = array_values($classes);
|
|
|
83 |
$this->iterations = $iterations;
|
|
|
84 |
$this->inputLayerFeatures = $inputLayerFeatures;
|
|
|
85 |
$this->hiddenLayers = $hiddenLayers;
|
|
|
86 |
$this->activationFunction = $activationFunction;
|
|
|
87 |
$this->learningRate = $learningRate;
|
|
|
88 |
|
|
|
89 |
$this->initNetwork();
|
|
|
90 |
}
|
|
|
91 |
|
|
|
92 |
public function train(array $samples, array $targets): void
|
|
|
93 |
{
|
|
|
94 |
$this->reset();
|
|
|
95 |
$this->initNetwork();
|
|
|
96 |
$this->partialTrain($samples, $targets, $this->classes);
|
|
|
97 |
}
|
|
|
98 |
|
|
|
99 |
/**
|
|
|
100 |
* @throws InvalidArgumentException
|
|
|
101 |
*/
|
|
|
102 |
public function partialTrain(array $samples, array $targets, array $classes = []): void
|
|
|
103 |
{
|
|
|
104 |
if (count($classes) > 0 && array_values($classes) !== $this->classes) {
|
|
|
105 |
// We require the list of classes in the constructor.
|
|
|
106 |
throw new InvalidArgumentException(
|
|
|
107 |
'The provided classes don\'t match the classes provided in the constructor'
|
|
|
108 |
);
|
|
|
109 |
}
|
|
|
110 |
|
|
|
111 |
for ($i = 0; $i < $this->iterations; ++$i) {
|
|
|
112 |
$this->trainSamples($samples, $targets);
|
|
|
113 |
}
|
|
|
114 |
}
|
|
|
115 |
|
|
|
116 |
public function setLearningRate(float $learningRate): void
|
|
|
117 |
{
|
|
|
118 |
$this->learningRate = $learningRate;
|
|
|
119 |
$this->backpropagation->setLearningRate($this->learningRate);
|
|
|
120 |
}
|
|
|
121 |
|
|
|
122 |
public function getOutput(): array
|
|
|
123 |
{
|
|
|
124 |
$result = [];
|
|
|
125 |
foreach ($this->getOutputLayer()->getNodes() as $i => $neuron) {
|
|
|
126 |
$result[$this->classes[$i]] = $neuron->getOutput();
|
|
|
127 |
}
|
|
|
128 |
|
|
|
129 |
return $result;
|
|
|
130 |
}
|
|
|
131 |
|
|
|
132 |
public function getLearningRate(): float
|
|
|
133 |
{
|
|
|
134 |
return $this->learningRate;
|
|
|
135 |
}
|
|
|
136 |
|
|
|
137 |
public function getBackpropagation(): Backpropagation
|
|
|
138 |
{
|
|
|
139 |
return $this->backpropagation;
|
|
|
140 |
}
|
|
|
141 |
|
|
|
142 |
/**
|
|
|
143 |
* @param mixed $target
|
|
|
144 |
*/
|
|
|
145 |
abstract protected function trainSample(array $sample, $target): void;
|
|
|
146 |
|
|
|
147 |
/**
|
|
|
148 |
* @return mixed
|
|
|
149 |
*/
|
|
|
150 |
abstract protected function predictSample(array $sample);
|
|
|
151 |
|
|
|
152 |
protected function reset(): void
|
|
|
153 |
{
|
|
|
154 |
$this->removeLayers();
|
|
|
155 |
}
|
|
|
156 |
|
|
|
157 |
private function initNetwork(): void
|
|
|
158 |
{
|
|
|
159 |
$this->addInputLayer($this->inputLayerFeatures);
|
|
|
160 |
$this->addNeuronLayers($this->hiddenLayers, $this->activationFunction);
|
|
|
161 |
|
|
|
162 |
// Sigmoid function for the output layer as we want a value from 0 to 1.
|
|
|
163 |
$sigmoid = new Sigmoid();
|
|
|
164 |
$this->addNeuronLayers([count($this->classes)], $sigmoid);
|
|
|
165 |
|
|
|
166 |
$this->addBiasNodes();
|
|
|
167 |
$this->generateSynapses();
|
|
|
168 |
|
|
|
169 |
$this->backpropagation = new Backpropagation($this->learningRate);
|
|
|
170 |
}
|
|
|
171 |
|
|
|
172 |
private function addInputLayer(int $nodes): void
|
|
|
173 |
{
|
|
|
174 |
$this->addLayer(new Layer($nodes, Input::class));
|
|
|
175 |
}
|
|
|
176 |
|
|
|
177 |
private function addNeuronLayers(array $layers, ?ActivationFunction $defaultActivationFunction = null): void
|
|
|
178 |
{
|
|
|
179 |
foreach ($layers as $layer) {
|
|
|
180 |
if (is_array($layer)) {
|
|
|
181 |
$function = $layer[1] instanceof ActivationFunction ? $layer[1] : $defaultActivationFunction;
|
|
|
182 |
$this->addLayer(new Layer($layer[0], Neuron::class, $function));
|
|
|
183 |
} elseif ($layer instanceof Layer) {
|
|
|
184 |
$this->addLayer($layer);
|
|
|
185 |
} else {
|
|
|
186 |
$this->addLayer(new Layer($layer, Neuron::class, $defaultActivationFunction));
|
|
|
187 |
}
|
|
|
188 |
}
|
|
|
189 |
}
|
|
|
190 |
|
|
|
191 |
private function generateSynapses(): void
|
|
|
192 |
{
|
|
|
193 |
$layersNumber = count($this->layers) - 1;
|
|
|
194 |
for ($i = 0; $i < $layersNumber; ++$i) {
|
|
|
195 |
$currentLayer = $this->layers[$i];
|
|
|
196 |
$nextLayer = $this->layers[$i + 1];
|
|
|
197 |
$this->generateLayerSynapses($nextLayer, $currentLayer);
|
|
|
198 |
}
|
|
|
199 |
}
|
|
|
200 |
|
|
|
201 |
private function addBiasNodes(): void
|
|
|
202 |
{
|
|
|
203 |
$biasLayers = count($this->layers) - 1;
|
|
|
204 |
for ($i = 0; $i < $biasLayers; ++$i) {
|
|
|
205 |
$this->layers[$i]->addNode(new Bias());
|
|
|
206 |
}
|
|
|
207 |
}
|
|
|
208 |
|
|
|
209 |
private function generateLayerSynapses(Layer $nextLayer, Layer $currentLayer): void
|
|
|
210 |
{
|
|
|
211 |
foreach ($nextLayer->getNodes() as $nextNeuron) {
|
|
|
212 |
if ($nextNeuron instanceof Neuron) {
|
|
|
213 |
$this->generateNeuronSynapses($currentLayer, $nextNeuron);
|
|
|
214 |
}
|
|
|
215 |
}
|
|
|
216 |
}
|
|
|
217 |
|
|
|
218 |
private function generateNeuronSynapses(Layer $currentLayer, Neuron $nextNeuron): void
|
|
|
219 |
{
|
|
|
220 |
foreach ($currentLayer->getNodes() as $currentNeuron) {
|
|
|
221 |
$nextNeuron->addSynapse(new Synapse($currentNeuron));
|
|
|
222 |
}
|
|
|
223 |
}
|
|
|
224 |
|
|
|
225 |
private function trainSamples(array $samples, array $targets): void
|
|
|
226 |
{
|
|
|
227 |
foreach ($targets as $key => $target) {
|
|
|
228 |
$this->trainSample($samples[$key], $target);
|
|
|
229 |
}
|
|
|
230 |
}
|
|
|
231 |
}
|