| 1 |
efrain |
1 |
<?php
|
|
|
2 |
|
|
|
3 |
declare(strict_types=1);
|
|
|
4 |
|
|
|
5 |
namespace Phpml\Helper\Optimizer;
|
|
|
6 |
|
|
|
7 |
use Closure;
|
|
|
8 |
use Phpml\Exception\InvalidArgumentException;
|
|
|
9 |
use Phpml\Exception\InvalidOperationException;
|
|
|
10 |
|
|
|
11 |
/**
|
|
|
12 |
* Stochastic Gradient Descent optimization method
|
|
|
13 |
* to find a solution for the equation A.ϴ = y where
|
|
|
14 |
* A (samples) and y (targets) are known and ϴ is unknown.
|
|
|
15 |
*/
|
|
|
16 |
class StochasticGD extends Optimizer
|
|
|
17 |
{
|
|
|
18 |
/**
|
|
|
19 |
* A (samples)
|
|
|
20 |
*
|
|
|
21 |
* @var array
|
|
|
22 |
*/
|
|
|
23 |
protected $samples = [];
|
|
|
24 |
|
|
|
25 |
/**
|
|
|
26 |
* y (targets)
|
|
|
27 |
*
|
|
|
28 |
* @var array
|
|
|
29 |
*/
|
|
|
30 |
protected $targets = [];
|
|
|
31 |
|
|
|
32 |
/**
|
|
|
33 |
* Callback function to get the gradient and cost value
|
|
|
34 |
* for a specific set of theta (ϴ) and a pair of sample & target
|
|
|
35 |
*
|
|
|
36 |
* @var \Closure|null
|
|
|
37 |
*/
|
|
|
38 |
protected $gradientCb;
|
|
|
39 |
|
|
|
40 |
/**
|
|
|
41 |
* Maximum number of iterations used to train the model
|
|
|
42 |
*
|
|
|
43 |
* @var int
|
|
|
44 |
*/
|
|
|
45 |
protected $maxIterations = 1000;
|
|
|
46 |
|
|
|
47 |
/**
|
|
|
48 |
* Learning rate is used to control the speed of the optimization.<br>
|
|
|
49 |
*
|
|
|
50 |
* Larger values of lr may overshoot the optimum or even cause divergence
|
|
|
51 |
* while small values slows down the convergence and increases the time
|
|
|
52 |
* required for the training
|
|
|
53 |
*
|
|
|
54 |
* @var float
|
|
|
55 |
*/
|
|
|
56 |
protected $learningRate = 0.001;
|
|
|
57 |
|
|
|
58 |
/**
|
|
|
59 |
* Minimum amount of change in the weights and error values
|
|
|
60 |
* between iterations that needs to be obtained to continue the training
|
|
|
61 |
*
|
|
|
62 |
* @var float
|
|
|
63 |
*/
|
|
|
64 |
protected $threshold = 1e-4;
|
|
|
65 |
|
|
|
66 |
/**
|
|
|
67 |
* Enable/Disable early stopping by checking the weight & cost values
|
|
|
68 |
* to see whether they changed large enough to continue the optimization
|
|
|
69 |
*
|
|
|
70 |
* @var bool
|
|
|
71 |
*/
|
|
|
72 |
protected $enableEarlyStop = true;
|
|
|
73 |
|
|
|
74 |
/**
|
|
|
75 |
* List of values obtained by evaluating the cost function at each iteration
|
|
|
76 |
* of the algorithm
|
|
|
77 |
*
|
|
|
78 |
* @var array
|
|
|
79 |
*/
|
|
|
80 |
protected $costValues = [];
|
|
|
81 |
|
|
|
82 |
/**
|
|
|
83 |
* Initializes the SGD optimizer for the given number of dimensions
|
|
|
84 |
*/
|
|
|
85 |
public function __construct(int $dimensions)
|
|
|
86 |
{
|
|
|
87 |
// Add one more dimension for the bias
|
|
|
88 |
parent::__construct($dimensions + 1);
|
|
|
89 |
|
|
|
90 |
$this->dimensions = $dimensions;
|
|
|
91 |
}
|
|
|
92 |
|
|
|
93 |
public function setTheta(array $theta): Optimizer
|
|
|
94 |
{
|
|
|
95 |
if (count($theta) !== $this->dimensions + 1) {
|
|
|
96 |
throw new InvalidArgumentException(sprintf('Number of values in the weights array should be %s', $this->dimensions + 1));
|
|
|
97 |
}
|
|
|
98 |
|
|
|
99 |
$this->theta = $theta;
|
|
|
100 |
|
|
|
101 |
return $this;
|
|
|
102 |
}
|
|
|
103 |
|
|
|
104 |
/**
|
|
|
105 |
* Sets minimum value for the change in the theta values
|
|
|
106 |
* between iterations to continue the iterations.<br>
|
|
|
107 |
*
|
|
|
108 |
* If change in the theta is less than given value then the
|
|
|
109 |
* algorithm will stop training
|
|
|
110 |
*
|
|
|
111 |
* @return $this
|
|
|
112 |
*/
|
|
|
113 |
public function setChangeThreshold(float $threshold = 1e-5)
|
|
|
114 |
{
|
|
|
115 |
$this->threshold = $threshold;
|
|
|
116 |
|
|
|
117 |
return $this;
|
|
|
118 |
}
|
|
|
119 |
|
|
|
120 |
/**
|
|
|
121 |
* Enable/Disable early stopping by checking at each iteration
|
|
|
122 |
* whether changes in theta or cost value are not large enough
|
|
|
123 |
*
|
|
|
124 |
* @return $this
|
|
|
125 |
*/
|
|
|
126 |
public function setEarlyStop(bool $enable = true)
|
|
|
127 |
{
|
|
|
128 |
$this->enableEarlyStop = $enable;
|
|
|
129 |
|
|
|
130 |
return $this;
|
|
|
131 |
}
|
|
|
132 |
|
|
|
133 |
/**
|
|
|
134 |
* @return $this
|
|
|
135 |
*/
|
|
|
136 |
public function setLearningRate(float $learningRate)
|
|
|
137 |
{
|
|
|
138 |
$this->learningRate = $learningRate;
|
|
|
139 |
|
|
|
140 |
return $this;
|
|
|
141 |
}
|
|
|
142 |
|
|
|
143 |
/**
|
|
|
144 |
* @return $this
|
|
|
145 |
*/
|
|
|
146 |
public function setMaxIterations(int $maxIterations)
|
|
|
147 |
{
|
|
|
148 |
$this->maxIterations = $maxIterations;
|
|
|
149 |
|
|
|
150 |
return $this;
|
|
|
151 |
}
|
|
|
152 |
|
|
|
153 |
/**
|
|
|
154 |
* Optimization procedure finds the unknow variables for the equation A.ϴ = y
|
|
|
155 |
* for the given samples (A) and targets (y).<br>
|
|
|
156 |
*
|
|
|
157 |
* The cost function to minimize and the gradient of the function are to be
|
|
|
158 |
* handled by the callback function provided as the third parameter of the method.
|
|
|
159 |
*/
|
|
|
160 |
public function runOptimization(array $samples, array $targets, Closure $gradientCb): array
|
|
|
161 |
{
|
|
|
162 |
$this->samples = $samples;
|
|
|
163 |
$this->targets = $targets;
|
|
|
164 |
$this->gradientCb = $gradientCb;
|
|
|
165 |
|
|
|
166 |
$currIter = 0;
|
|
|
167 |
$bestTheta = null;
|
|
|
168 |
$bestScore = 0.0;
|
|
|
169 |
$this->costValues = [];
|
|
|
170 |
|
|
|
171 |
while ($this->maxIterations > $currIter++) {
|
|
|
172 |
$theta = $this->theta;
|
|
|
173 |
|
|
|
174 |
// Update the guess
|
|
|
175 |
$cost = $this->updateTheta();
|
|
|
176 |
|
|
|
177 |
// Save the best theta in the "pocket" so that
|
|
|
178 |
// any future set of theta worse than this will be disregarded
|
|
|
179 |
if ($bestTheta === null || $cost <= $bestScore) {
|
|
|
180 |
$bestTheta = $theta;
|
|
|
181 |
$bestScore = $cost;
|
|
|
182 |
}
|
|
|
183 |
|
|
|
184 |
// Add the cost value for this iteration to the list
|
|
|
185 |
$this->costValues[] = $cost;
|
|
|
186 |
|
|
|
187 |
// Check for early stop
|
|
|
188 |
if ($this->enableEarlyStop && $this->earlyStop($theta)) {
|
|
|
189 |
break;
|
|
|
190 |
}
|
|
|
191 |
}
|
|
|
192 |
|
|
|
193 |
$this->clear();
|
|
|
194 |
|
|
|
195 |
// Solution in the pocket is better than or equal to the last state
|
|
|
196 |
// so, we use this solution
|
|
|
197 |
return $this->theta = (array) $bestTheta;
|
|
|
198 |
}
|
|
|
199 |
|
|
|
200 |
/**
|
|
|
201 |
* Returns the list of cost values for each iteration executed in
|
|
|
202 |
* last run of the optimization
|
|
|
203 |
*/
|
|
|
204 |
public function getCostValues(): array
|
|
|
205 |
{
|
|
|
206 |
return $this->costValues;
|
|
|
207 |
}
|
|
|
208 |
|
|
|
209 |
protected function updateTheta(): float
|
|
|
210 |
{
|
|
|
211 |
$jValue = 0.0;
|
|
|
212 |
$theta = $this->theta;
|
|
|
213 |
|
|
|
214 |
if ($this->gradientCb === null) {
|
|
|
215 |
throw new InvalidOperationException('Gradient callback is not defined');
|
|
|
216 |
}
|
|
|
217 |
|
|
|
218 |
foreach ($this->samples as $index => $sample) {
|
|
|
219 |
$target = $this->targets[$index];
|
|
|
220 |
|
|
|
221 |
$result = ($this->gradientCb)($theta, $sample, $target);
|
|
|
222 |
|
|
|
223 |
[$error, $gradient, $penalty] = array_pad($result, 3, 0);
|
|
|
224 |
|
|
|
225 |
// Update bias
|
|
|
226 |
$this->theta[0] -= $this->learningRate * $gradient;
|
|
|
227 |
|
|
|
228 |
// Update other values
|
|
|
229 |
for ($i = 1; $i <= $this->dimensions; ++$i) {
|
|
|
230 |
$this->theta[$i] -= $this->learningRate *
|
|
|
231 |
($gradient * $sample[$i - 1] + $penalty * $this->theta[$i]);
|
|
|
232 |
}
|
|
|
233 |
|
|
|
234 |
// Sum error rate
|
|
|
235 |
$jValue += $error;
|
|
|
236 |
}
|
|
|
237 |
|
|
|
238 |
return $jValue / count($this->samples);
|
|
|
239 |
}
|
|
|
240 |
|
|
|
241 |
/**
|
|
|
242 |
* Checks if the optimization is not effective enough and can be stopped
|
|
|
243 |
* in case large enough changes in the solution do not happen
|
|
|
244 |
*/
|
|
|
245 |
protected function earlyStop(array $oldTheta): bool
|
|
|
246 |
{
|
|
|
247 |
// Check for early stop: No change larger than threshold (default 1e-5)
|
|
|
248 |
$diff = array_map(
|
|
|
249 |
function ($w1, $w2) {
|
|
|
250 |
return abs($w1 - $w2) > $this->threshold ? 1 : 0;
|
|
|
251 |
},
|
|
|
252 |
$oldTheta,
|
|
|
253 |
$this->theta
|
|
|
254 |
);
|
|
|
255 |
|
|
|
256 |
if (array_sum($diff) == 0) {
|
|
|
257 |
return true;
|
|
|
258 |
}
|
|
|
259 |
|
|
|
260 |
// Check if the last two cost values are almost the same
|
|
|
261 |
$costs = array_slice($this->costValues, -2);
|
|
|
262 |
if (count($costs) === 2 && abs($costs[1] - $costs[0]) < $this->threshold) {
|
|
|
263 |
return true;
|
|
|
264 |
}
|
|
|
265 |
|
|
|
266 |
return false;
|
|
|
267 |
}
|
|
|
268 |
|
|
|
269 |
/**
|
|
|
270 |
* Clears the optimizer internal vars after the optimization process.
|
|
|
271 |
*/
|
|
|
272 |
protected function clear(): void
|
|
|
273 |
{
|
|
|
274 |
$this->samples = [];
|
|
|
275 |
$this->targets = [];
|
|
|
276 |
$this->gradientCb = null;
|
|
|
277 |
}
|
|
|
278 |
}
|