| 1 |
efrain |
1 |
<?php
|
|
|
2 |
|
|
|
3 |
declare(strict_types=1);
|
|
|
4 |
|
|
|
5 |
namespace Phpml\Helper\Optimizer;
|
|
|
6 |
|
|
|
7 |
use Closure;
|
|
|
8 |
|
|
|
9 |
/**
|
|
|
10 |
* Conjugate Gradient method to solve a non-linear f(x) with respect to unknown x
|
|
|
11 |
* See https://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method)
|
|
|
12 |
*
|
|
|
13 |
* The method applied below is explained in the below document in a practical manner
|
|
|
14 |
* - http://web.cs.iastate.edu/~cs577/handouts/conjugate-gradient.pdf
|
|
|
15 |
*
|
|
|
16 |
* However it is compliant with the general Conjugate Gradient method with
|
|
|
17 |
* Fletcher-Reeves update method. Note that, the f(x) is assumed to be one-dimensional
|
|
|
18 |
* and one gradient is utilized for all dimensions in the given data.
|
|
|
19 |
*/
|
|
|
20 |
class ConjugateGradient extends GD
|
|
|
21 |
{
|
|
|
22 |
public function runOptimization(array $samples, array $targets, Closure $gradientCb): array
|
|
|
23 |
{
|
|
|
24 |
$this->samples = $samples;
|
|
|
25 |
$this->targets = $targets;
|
|
|
26 |
$this->gradientCb = $gradientCb;
|
|
|
27 |
$this->sampleCount = count($samples);
|
|
|
28 |
$this->costValues = [];
|
|
|
29 |
|
|
|
30 |
$d = MP::muls($this->gradient($this->theta), -1);
|
|
|
31 |
|
|
|
32 |
for ($i = 0; $i < $this->maxIterations; ++$i) {
|
|
|
33 |
// Obtain α that minimizes f(θ + α.d)
|
|
|
34 |
$alpha = $this->getAlpha($d);
|
|
|
35 |
|
|
|
36 |
// θ(k+1) = θ(k) + α.d
|
|
|
37 |
$thetaNew = $this->getNewTheta($alpha, $d);
|
|
|
38 |
|
|
|
39 |
// β = ||∇f(x(k+1))||² ∕ ||∇f(x(k))||²
|
|
|
40 |
$beta = $this->getBeta($thetaNew);
|
|
|
41 |
|
|
|
42 |
// d(k+1) =–∇f(x(k+1)) + β(k).d(k)
|
|
|
43 |
$d = $this->getNewDirection($thetaNew, $beta, $d);
|
|
|
44 |
|
|
|
45 |
// Save values for the next iteration
|
|
|
46 |
$oldTheta = $this->theta;
|
|
|
47 |
$this->costValues[] = $this->cost($thetaNew);
|
|
|
48 |
|
|
|
49 |
$this->theta = $thetaNew;
|
|
|
50 |
if ($this->enableEarlyStop && $this->earlyStop($oldTheta)) {
|
|
|
51 |
break;
|
|
|
52 |
}
|
|
|
53 |
}
|
|
|
54 |
|
|
|
55 |
$this->clear();
|
|
|
56 |
|
|
|
57 |
return $this->theta;
|
|
|
58 |
}
|
|
|
59 |
|
|
|
60 |
/**
|
|
|
61 |
* Executes the callback function for the problem and returns
|
|
|
62 |
* sum of the gradient for all samples & targets.
|
|
|
63 |
*/
|
|
|
64 |
protected function gradient(array $theta): array
|
|
|
65 |
{
|
|
|
66 |
[, $updates, $penalty] = parent::gradient($theta);
|
|
|
67 |
|
|
|
68 |
// Calculate gradient for each dimension
|
|
|
69 |
$gradient = [];
|
|
|
70 |
for ($i = 0; $i <= $this->dimensions; ++$i) {
|
|
|
71 |
if ($i === 0) {
|
|
|
72 |
$gradient[$i] = array_sum($updates);
|
|
|
73 |
} else {
|
|
|
74 |
$col = array_column($this->samples, $i - 1);
|
|
|
75 |
$error = 0;
|
|
|
76 |
foreach ($col as $index => $val) {
|
|
|
77 |
$error += $val * $updates[$index];
|
|
|
78 |
}
|
|
|
79 |
|
|
|
80 |
$gradient[$i] = $error + $penalty * $theta[$i];
|
|
|
81 |
}
|
|
|
82 |
}
|
|
|
83 |
|
|
|
84 |
return $gradient;
|
|
|
85 |
}
|
|
|
86 |
|
|
|
87 |
/**
|
|
|
88 |
* Returns the value of f(x) for given solution
|
|
|
89 |
*/
|
|
|
90 |
protected function cost(array $theta): float
|
|
|
91 |
{
|
|
|
92 |
[$cost] = parent::gradient($theta);
|
|
|
93 |
|
|
|
94 |
return array_sum($cost) / (int) $this->sampleCount;
|
|
|
95 |
}
|
|
|
96 |
|
|
|
97 |
/**
|
|
|
98 |
* Calculates alpha that minimizes the function f(θ + α.d)
|
|
|
99 |
* by performing a line search that does not rely upon the derivation.
|
|
|
100 |
*
|
|
|
101 |
* There are several alternatives for this function. For now, we
|
|
|
102 |
* prefer a method inspired from the bisection method for its simplicity.
|
|
|
103 |
* This algorithm attempts to find an optimum alpha value between 0.0001 and 0.01
|
|
|
104 |
*
|
|
|
105 |
* Algorithm as follows:
|
|
|
106 |
* a) Probe a small alpha (0.0001) and calculate cost function
|
|
|
107 |
* b) Probe a larger alpha (0.01) and calculate cost function
|
|
|
108 |
* b-1) If cost function decreases, continue enlarging alpha
|
|
|
109 |
* b-2) If cost function increases, take the midpoint and try again
|
|
|
110 |
*/
|
|
|
111 |
protected function getAlpha(array $d): float
|
|
|
112 |
{
|
|
|
113 |
$small = MP::muls($d, 0.0001);
|
|
|
114 |
$large = MP::muls($d, 0.01);
|
|
|
115 |
|
|
|
116 |
// Obtain θ + α.d for two initial values, x0 and x1
|
|
|
117 |
$x0 = MP::add($this->theta, $small);
|
|
|
118 |
$x1 = MP::add($this->theta, $large);
|
|
|
119 |
|
|
|
120 |
$epsilon = 0.0001;
|
|
|
121 |
$iteration = 0;
|
|
|
122 |
do {
|
|
|
123 |
$fx1 = $this->cost($x1);
|
|
|
124 |
$fx0 = $this->cost($x0);
|
|
|
125 |
|
|
|
126 |
// If the difference between two values is small enough
|
|
|
127 |
// then break the loop
|
|
|
128 |
if (abs($fx1 - $fx0) <= $epsilon) {
|
|
|
129 |
break;
|
|
|
130 |
}
|
|
|
131 |
|
|
|
132 |
if ($fx1 < $fx0) {
|
|
|
133 |
$x0 = $x1;
|
|
|
134 |
$x1 = MP::adds($x1, 0.01); // Enlarge second
|
|
|
135 |
} else {
|
|
|
136 |
$x1 = MP::divs(MP::add($x1, $x0), 2.0);
|
|
|
137 |
} // Get to the midpoint
|
|
|
138 |
|
|
|
139 |
$error = $fx1 / $this->dimensions;
|
|
|
140 |
} while ($error <= $epsilon || $iteration++ < 10);
|
|
|
141 |
|
|
|
142 |
// Return α = θ / d
|
|
|
143 |
// For accuracy, choose a dimension which maximize |d[i]|
|
|
|
144 |
$imax = 0;
|
|
|
145 |
for ($i = 1; $i <= $this->dimensions; ++$i) {
|
|
|
146 |
if (abs($d[$i]) > abs($d[$imax])) {
|
|
|
147 |
$imax = $i;
|
|
|
148 |
}
|
|
|
149 |
}
|
|
|
150 |
|
|
|
151 |
if ($d[$imax] == 0) {
|
|
|
152 |
return $x1[$imax] - $this->theta[$imax];
|
|
|
153 |
}
|
|
|
154 |
|
|
|
155 |
return ($x1[$imax] - $this->theta[$imax]) / $d[$imax];
|
|
|
156 |
}
|
|
|
157 |
|
|
|
158 |
/**
|
|
|
159 |
* Calculates new set of solutions with given alpha (for each θ(k)) and
|
|
|
160 |
* gradient direction.
|
|
|
161 |
*
|
|
|
162 |
* θ(k+1) = θ(k) + α.d
|
|
|
163 |
*/
|
|
|
164 |
protected function getNewTheta(float $alpha, array $d): array
|
|
|
165 |
{
|
|
|
166 |
return MP::add($this->theta, MP::muls($d, $alpha));
|
|
|
167 |
}
|
|
|
168 |
|
|
|
169 |
/**
|
|
|
170 |
* Calculates new beta (β) for given set of solutions by using
|
|
|
171 |
* Fletcher–Reeves method.
|
|
|
172 |
*
|
|
|
173 |
* β = ||f(x(k+1))||² ∕ ||f(x(k))||²
|
|
|
174 |
*
|
|
|
175 |
* See:
|
|
|
176 |
* R. Fletcher and C. M. Reeves, "Function minimization by conjugate gradients", Comput. J. 7 (1964), 149–154.
|
|
|
177 |
*/
|
|
|
178 |
protected function getBeta(array $newTheta): float
|
|
|
179 |
{
|
|
|
180 |
$gNew = $this->gradient($newTheta);
|
|
|
181 |
$gOld = $this->gradient($this->theta);
|
|
|
182 |
$dNew = 0;
|
|
|
183 |
$dOld = 1e-100;
|
|
|
184 |
for ($i = 0; $i <= $this->dimensions; ++$i) {
|
|
|
185 |
$dNew += $gNew[$i] ** 2;
|
|
|
186 |
$dOld += $gOld[$i] ** 2;
|
|
|
187 |
}
|
|
|
188 |
|
|
|
189 |
return $dNew / $dOld;
|
|
|
190 |
}
|
|
|
191 |
|
|
|
192 |
/**
|
|
|
193 |
* Calculates the new conjugate direction
|
|
|
194 |
*
|
|
|
195 |
* d(k+1) =–∇f(x(k+1)) + β(k).d(k)
|
|
|
196 |
*/
|
|
|
197 |
protected function getNewDirection(array $theta, float $beta, array $d): array
|
|
|
198 |
{
|
|
|
199 |
$grad = $this->gradient($theta);
|
|
|
200 |
|
|
|
201 |
return MP::add(MP::muls($grad, -1), MP::muls($d, $beta));
|
|
|
202 |
}
|
|
|
203 |
}
|
|
|
204 |
|
|
|
205 |
/**
|
|
|
206 |
* Handles element-wise vector operations between vector-vector
|
|
|
207 |
* and vector-scalar variables
|
|
|
208 |
*/
|
|
|
209 |
class MP
|
|
|
210 |
{
|
|
|
211 |
/**
|
|
|
212 |
* Element-wise <b>multiplication</b> of two vectors of the same size
|
|
|
213 |
*/
|
|
|
214 |
public static function mul(array $m1, array $m2): array
|
|
|
215 |
{
|
|
|
216 |
$res = [];
|
|
|
217 |
foreach ($m1 as $i => $val) {
|
|
|
218 |
$res[] = $val * $m2[$i];
|
|
|
219 |
}
|
|
|
220 |
|
|
|
221 |
return $res;
|
|
|
222 |
}
|
|
|
223 |
|
|
|
224 |
/**
|
|
|
225 |
* Element-wise <b>division</b> of two vectors of the same size
|
|
|
226 |
*/
|
|
|
227 |
public static function div(array $m1, array $m2): array
|
|
|
228 |
{
|
|
|
229 |
$res = [];
|
|
|
230 |
foreach ($m1 as $i => $val) {
|
|
|
231 |
$res[] = $val / $m2[$i];
|
|
|
232 |
}
|
|
|
233 |
|
|
|
234 |
return $res;
|
|
|
235 |
}
|
|
|
236 |
|
|
|
237 |
/**
|
|
|
238 |
* Element-wise <b>addition</b> of two vectors of the same size
|
|
|
239 |
*/
|
|
|
240 |
public static function add(array $m1, array $m2, int $mag = 1): array
|
|
|
241 |
{
|
|
|
242 |
$res = [];
|
|
|
243 |
foreach ($m1 as $i => $val) {
|
|
|
244 |
$res[] = $val + $mag * $m2[$i];
|
|
|
245 |
}
|
|
|
246 |
|
|
|
247 |
return $res;
|
|
|
248 |
}
|
|
|
249 |
|
|
|
250 |
/**
|
|
|
251 |
* Element-wise <b>subtraction</b> of two vectors of the same size
|
|
|
252 |
*/
|
|
|
253 |
public static function sub(array $m1, array $m2): array
|
|
|
254 |
{
|
|
|
255 |
return self::add($m1, $m2, -1);
|
|
|
256 |
}
|
|
|
257 |
|
|
|
258 |
/**
|
|
|
259 |
* Element-wise <b>multiplication</b> of a vector with a scalar
|
|
|
260 |
*/
|
|
|
261 |
public static function muls(array $m1, float $m2): array
|
|
|
262 |
{
|
|
|
263 |
$res = [];
|
|
|
264 |
foreach ($m1 as $val) {
|
|
|
265 |
$res[] = $val * $m2;
|
|
|
266 |
}
|
|
|
267 |
|
|
|
268 |
return $res;
|
|
|
269 |
}
|
|
|
270 |
|
|
|
271 |
/**
|
|
|
272 |
* Element-wise <b>division</b> of a vector with a scalar
|
|
|
273 |
*/
|
|
|
274 |
public static function divs(array $m1, float $m2): array
|
|
|
275 |
{
|
|
|
276 |
$res = [];
|
|
|
277 |
foreach ($m1 as $val) {
|
|
|
278 |
$res[] = $val / ($m2 + 1e-32);
|
|
|
279 |
}
|
|
|
280 |
|
|
|
281 |
return $res;
|
|
|
282 |
}
|
|
|
283 |
|
|
|
284 |
/**
|
|
|
285 |
* Element-wise <b>addition</b> of a vector with a scalar
|
|
|
286 |
*/
|
|
|
287 |
public static function adds(array $m1, float $m2, int $mag = 1): array
|
|
|
288 |
{
|
|
|
289 |
$res = [];
|
|
|
290 |
foreach ($m1 as $val) {
|
|
|
291 |
$res[] = $val + $mag * $m2;
|
|
|
292 |
}
|
|
|
293 |
|
|
|
294 |
return $res;
|
|
|
295 |
}
|
|
|
296 |
|
|
|
297 |
/**
|
|
|
298 |
* Element-wise <b>subtraction</b> of a vector with a scalar
|
|
|
299 |
*/
|
|
|
300 |
public static function subs(array $m1, float $m2): array
|
|
|
301 |
{
|
|
|
302 |
return self::adds($m1, $m2, -1);
|
|
|
303 |
}
|
|
|
304 |
}
|