1 |
efrain |
1 |
<?php
|
|
|
2 |
|
|
|
3 |
declare(strict_types=1);
|
|
|
4 |
|
|
|
5 |
namespace Phpml\Helper;
|
|
|
6 |
|
|
|
7 |
use Phpml\Classification\Classifier;
|
|
|
8 |
|
|
|
9 |
trait OneVsRest
|
|
|
10 |
{
|
|
|
11 |
/**
|
|
|
12 |
* @var array
|
|
|
13 |
*/
|
|
|
14 |
protected $classifiers = [];
|
|
|
15 |
|
|
|
16 |
/**
|
|
|
17 |
* All provided training targets' labels.
|
|
|
18 |
*
|
|
|
19 |
* @var array
|
|
|
20 |
*/
|
|
|
21 |
protected $allLabels = [];
|
|
|
22 |
|
|
|
23 |
/**
|
|
|
24 |
* @var array
|
|
|
25 |
*/
|
|
|
26 |
protected $costValues = [];
|
|
|
27 |
|
|
|
28 |
/**
|
|
|
29 |
* Train a binary classifier in the OvR style
|
|
|
30 |
*/
|
|
|
31 |
public function train(array $samples, array $targets): void
|
|
|
32 |
{
|
|
|
33 |
// Clears previous stuff.
|
|
|
34 |
$this->reset();
|
|
|
35 |
|
|
|
36 |
$this->trainByLabel($samples, $targets);
|
|
|
37 |
}
|
|
|
38 |
|
|
|
39 |
/**
|
|
|
40 |
* Resets the classifier and the vars internally used by OneVsRest to create multiple classifiers.
|
|
|
41 |
*/
|
|
|
42 |
public function reset(): void
|
|
|
43 |
{
|
|
|
44 |
$this->classifiers = [];
|
|
|
45 |
$this->allLabels = [];
|
|
|
46 |
$this->costValues = [];
|
|
|
47 |
|
|
|
48 |
$this->resetBinary();
|
|
|
49 |
}
|
|
|
50 |
|
|
|
51 |
protected function trainByLabel(array $samples, array $targets, array $allLabels = []): void
|
|
|
52 |
{
|
|
|
53 |
// Overwrites the current value if it exist. $allLabels must be provided for each partialTrain run.
|
|
|
54 |
$this->allLabels = count($allLabels) === 0 ? array_keys(array_count_values($targets)) : $allLabels;
|
|
|
55 |
sort($this->allLabels, SORT_STRING);
|
|
|
56 |
|
|
|
57 |
// If there are only two targets, then there is no need to perform OvR
|
|
|
58 |
if (count($this->allLabels) === 2) {
|
|
|
59 |
// Init classifier if required.
|
|
|
60 |
if (count($this->classifiers) === 0) {
|
|
|
61 |
$this->classifiers[0] = $this->getClassifierCopy();
|
|
|
62 |
}
|
|
|
63 |
|
|
|
64 |
$this->classifiers[0]->trainBinary($samples, $targets, $this->allLabels);
|
|
|
65 |
} else {
|
|
|
66 |
// Train a separate classifier for each label and memorize them
|
|
|
67 |
|
|
|
68 |
foreach ($this->allLabels as $label) {
|
|
|
69 |
// Init classifier if required.
|
|
|
70 |
if (!isset($this->classifiers[$label])) {
|
|
|
71 |
$this->classifiers[$label] = $this->getClassifierCopy();
|
|
|
72 |
}
|
|
|
73 |
|
|
|
74 |
[$binarizedTargets, $classifierLabels] = $this->binarizeTargets($targets, $label);
|
|
|
75 |
$this->classifiers[$label]->trainBinary($samples, $binarizedTargets, $classifierLabels);
|
|
|
76 |
}
|
|
|
77 |
}
|
|
|
78 |
|
|
|
79 |
// If the underlying classifier is capable of giving the cost values
|
|
|
80 |
// during the training, then assign it to the relevant variable
|
|
|
81 |
// Adding just the first classifier cost values to avoid complex average calculations.
|
|
|
82 |
$classifierref = reset($this->classifiers);
|
|
|
83 |
if (method_exists($classifierref, 'getCostValues')) {
|
|
|
84 |
$this->costValues = $classifierref->getCostValues();
|
|
|
85 |
}
|
|
|
86 |
}
|
|
|
87 |
|
|
|
88 |
/**
|
|
|
89 |
* Returns an instance of the current class after cleaning up OneVsRest stuff.
|
|
|
90 |
*/
|
|
|
91 |
protected function getClassifierCopy(): Classifier
|
|
|
92 |
{
|
|
|
93 |
// Clone the current classifier, so that
|
|
|
94 |
// we don't mess up its variables while training
|
|
|
95 |
// multiple instances of this classifier
|
|
|
96 |
$classifier = clone $this;
|
|
|
97 |
$classifier->reset();
|
|
|
98 |
|
|
|
99 |
return $classifier;
|
|
|
100 |
}
|
|
|
101 |
|
|
|
102 |
/**
|
|
|
103 |
* @return mixed
|
|
|
104 |
*/
|
|
|
105 |
protected function predictSample(array $sample)
|
|
|
106 |
{
|
|
|
107 |
if (count($this->allLabels) === 2) {
|
|
|
108 |
return $this->classifiers[0]->predictSampleBinary($sample);
|
|
|
109 |
}
|
|
|
110 |
|
|
|
111 |
$probs = [];
|
|
|
112 |
|
|
|
113 |
foreach ($this->classifiers as $label => $predictor) {
|
|
|
114 |
$probs[$label] = $predictor->predictProbability($sample, $label);
|
|
|
115 |
}
|
|
|
116 |
|
|
|
117 |
arsort($probs, SORT_NUMERIC);
|
|
|
118 |
|
|
|
119 |
return key($probs);
|
|
|
120 |
}
|
|
|
121 |
|
|
|
122 |
/**
|
|
|
123 |
* Each classifier should implement this method instead of train(samples, targets)
|
|
|
124 |
*/
|
|
|
125 |
abstract protected function trainBinary(array $samples, array $targets, array $labels);
|
|
|
126 |
|
|
|
127 |
/**
|
|
|
128 |
* To be overwritten by OneVsRest classifiers.
|
|
|
129 |
*/
|
|
|
130 |
abstract protected function resetBinary(): void;
|
|
|
131 |
|
|
|
132 |
/**
|
|
|
133 |
* Each classifier that make use of OvR approach should be able to
|
|
|
134 |
* return a probability for a sample to belong to the given label.
|
|
|
135 |
*
|
|
|
136 |
* @return mixed
|
|
|
137 |
*/
|
|
|
138 |
abstract protected function predictProbability(array $sample, string $label);
|
|
|
139 |
|
|
|
140 |
/**
|
|
|
141 |
* Each classifier should implement this method instead of predictSample()
|
|
|
142 |
*
|
|
|
143 |
* @return mixed
|
|
|
144 |
*/
|
|
|
145 |
abstract protected function predictSampleBinary(array $sample);
|
|
|
146 |
|
|
|
147 |
/**
|
|
|
148 |
* Groups all targets into two groups: Targets equal to
|
|
|
149 |
* the given label and the others
|
|
|
150 |
*
|
|
|
151 |
* $targets is not passed by reference nor contains objects so this method
|
|
|
152 |
* changes will not affect the caller $targets array.
|
|
|
153 |
*
|
|
|
154 |
* @param mixed $label
|
|
|
155 |
*
|
|
|
156 |
* @return array Binarized targets and target's labels
|
|
|
157 |
*/
|
|
|
158 |
private function binarizeTargets(array $targets, $label): array
|
|
|
159 |
{
|
|
|
160 |
$notLabel = "not_{$label}";
|
|
|
161 |
foreach ($targets as $key => $target) {
|
|
|
162 |
$targets[$key] = $target == $label ? $label : $notLabel;
|
|
|
163 |
}
|
|
|
164 |
|
|
|
165 |
$labels = [$label, $notLabel];
|
|
|
166 |
|
|
|
167 |
return [$targets, $labels];
|
|
|
168 |
}
|
|
|
169 |
}
|