| 1 |
efrain |
1 |
<?php
|
|
|
2 |
|
|
|
3 |
declare(strict_types=1);
|
|
|
4 |
|
|
|
5 |
namespace Phpml\Clustering;
|
|
|
6 |
|
|
|
7 |
use Phpml\Clustering\KMeans\Cluster;
|
|
|
8 |
use Phpml\Clustering\KMeans\Point;
|
|
|
9 |
use Phpml\Clustering\KMeans\Space;
|
|
|
10 |
use Phpml\Exception\InvalidArgumentException;
|
|
|
11 |
use Phpml\Math\Distance\Euclidean;
|
|
|
12 |
|
|
|
13 |
class FuzzyCMeans implements Clusterer
|
|
|
14 |
{
|
|
|
15 |
/**
|
|
|
16 |
* @var int
|
|
|
17 |
*/
|
|
|
18 |
private $clustersNumber;
|
|
|
19 |
|
|
|
20 |
/**
|
|
|
21 |
* @var Cluster[]
|
|
|
22 |
*/
|
|
|
23 |
private $clusters = [];
|
|
|
24 |
|
|
|
25 |
/**
|
|
|
26 |
* @var Space
|
|
|
27 |
*/
|
|
|
28 |
private $space;
|
|
|
29 |
|
|
|
30 |
/**
|
|
|
31 |
* @var float[][]
|
|
|
32 |
*/
|
|
|
33 |
private $membership = [];
|
|
|
34 |
|
|
|
35 |
/**
|
|
|
36 |
* @var float
|
|
|
37 |
*/
|
|
|
38 |
private $fuzziness;
|
|
|
39 |
|
|
|
40 |
/**
|
|
|
41 |
* @var float
|
|
|
42 |
*/
|
|
|
43 |
private $epsilon;
|
|
|
44 |
|
|
|
45 |
/**
|
|
|
46 |
* @var int
|
|
|
47 |
*/
|
|
|
48 |
private $maxIterations;
|
|
|
49 |
|
|
|
50 |
/**
|
|
|
51 |
* @var int
|
|
|
52 |
*/
|
|
|
53 |
private $sampleCount;
|
|
|
54 |
|
|
|
55 |
/**
|
|
|
56 |
* @var array
|
|
|
57 |
*/
|
|
|
58 |
private $samples = [];
|
|
|
59 |
|
|
|
60 |
/**
|
|
|
61 |
* @throws InvalidArgumentException
|
|
|
62 |
*/
|
|
|
63 |
public function __construct(int $clustersNumber, float $fuzziness = 2.0, float $epsilon = 1e-2, int $maxIterations = 100)
|
|
|
64 |
{
|
|
|
65 |
if ($clustersNumber <= 0) {
|
|
|
66 |
throw new InvalidArgumentException('Invalid clusters number');
|
|
|
67 |
}
|
|
|
68 |
|
|
|
69 |
$this->clustersNumber = $clustersNumber;
|
|
|
70 |
$this->fuzziness = $fuzziness;
|
|
|
71 |
$this->epsilon = $epsilon;
|
|
|
72 |
$this->maxIterations = $maxIterations;
|
|
|
73 |
}
|
|
|
74 |
|
|
|
75 |
public function getMembershipMatrix(): array
|
|
|
76 |
{
|
|
|
77 |
return $this->membership;
|
|
|
78 |
}
|
|
|
79 |
|
|
|
80 |
public function cluster(array $samples): array
|
|
|
81 |
{
|
|
|
82 |
// Initialize variables, clusters and membership matrix
|
|
|
83 |
$this->sampleCount = count($samples);
|
|
|
84 |
$this->samples = &$samples;
|
|
|
85 |
$this->space = new Space(count($samples[0]));
|
|
|
86 |
$this->initClusters();
|
|
|
87 |
|
|
|
88 |
// Our goal is minimizing the objective value while
|
|
|
89 |
// executing the clustering steps at a maximum number of iterations
|
|
|
90 |
$lastObjective = 0.0;
|
|
|
91 |
$iterations = 0;
|
|
|
92 |
do {
|
|
|
93 |
// Update the membership matrix and cluster centers, respectively
|
|
|
94 |
$this->updateMembershipMatrix();
|
|
|
95 |
$this->updateClusters();
|
|
|
96 |
|
|
|
97 |
// Calculate the new value of the objective function
|
|
|
98 |
$objectiveVal = $this->getObjective();
|
|
|
99 |
$difference = abs($lastObjective - $objectiveVal);
|
|
|
100 |
$lastObjective = $objectiveVal;
|
|
|
101 |
} while ($difference > $this->epsilon && $iterations++ <= $this->maxIterations);
|
|
|
102 |
|
|
|
103 |
// Attach (hard cluster) each data point to the nearest cluster
|
|
|
104 |
for ($k = 0; $k < $this->sampleCount; ++$k) {
|
|
|
105 |
$column = array_column($this->membership, $k);
|
|
|
106 |
arsort($column);
|
|
|
107 |
reset($column);
|
|
|
108 |
$cluster = $this->clusters[key($column)];
|
|
|
109 |
$cluster->attach(new Point($this->samples[$k]));
|
|
|
110 |
}
|
|
|
111 |
|
|
|
112 |
// Return grouped samples
|
|
|
113 |
$grouped = [];
|
|
|
114 |
foreach ($this->clusters as $cluster) {
|
|
|
115 |
$grouped[] = $cluster->getPoints();
|
|
|
116 |
}
|
|
|
117 |
|
|
|
118 |
return $grouped;
|
|
|
119 |
}
|
|
|
120 |
|
|
|
121 |
protected function initClusters(): void
|
|
|
122 |
{
|
|
|
123 |
// Membership array is a matrix of cluster number by sample counts
|
|
|
124 |
// We initilize the membership array with random values
|
|
|
125 |
$dim = $this->space->getDimension();
|
|
|
126 |
$this->generateRandomMembership($dim, $this->sampleCount);
|
|
|
127 |
$this->updateClusters();
|
|
|
128 |
}
|
|
|
129 |
|
|
|
130 |
protected function generateRandomMembership(int $rows, int $cols): void
|
|
|
131 |
{
|
|
|
132 |
$this->membership = [];
|
|
|
133 |
for ($i = 0; $i < $rows; ++$i) {
|
|
|
134 |
$row = [];
|
|
|
135 |
$total = 0.0;
|
|
|
136 |
for ($k = 0; $k < $cols; ++$k) {
|
|
|
137 |
$val = random_int(1, 5) / 10.0;
|
|
|
138 |
$row[] = $val;
|
|
|
139 |
$total += $val;
|
|
|
140 |
}
|
|
|
141 |
|
|
|
142 |
$this->membership[] = array_map(static function ($val) use ($total): float {
|
|
|
143 |
return $val / $total;
|
|
|
144 |
}, $row);
|
|
|
145 |
}
|
|
|
146 |
}
|
|
|
147 |
|
|
|
148 |
protected function updateClusters(): void
|
|
|
149 |
{
|
|
|
150 |
$dim = $this->space->getDimension();
|
|
|
151 |
if (count($this->clusters) === 0) {
|
|
|
152 |
for ($i = 0; $i < $this->clustersNumber; ++$i) {
|
|
|
153 |
$this->clusters[] = new Cluster($this->space, array_fill(0, $dim, 0.0));
|
|
|
154 |
}
|
|
|
155 |
}
|
|
|
156 |
|
|
|
157 |
for ($i = 0; $i < $this->clustersNumber; ++$i) {
|
|
|
158 |
$cluster = $this->clusters[$i];
|
|
|
159 |
$center = $cluster->getCoordinates();
|
|
|
160 |
for ($k = 0; $k < $dim; ++$k) {
|
|
|
161 |
$a = $this->getMembershipRowTotal($i, $k, true);
|
|
|
162 |
$b = $this->getMembershipRowTotal($i, $k, false);
|
|
|
163 |
$center[$k] = $a / $b;
|
|
|
164 |
}
|
|
|
165 |
|
|
|
166 |
$cluster->setCoordinates($center);
|
|
|
167 |
}
|
|
|
168 |
}
|
|
|
169 |
|
|
|
170 |
protected function getMembershipRowTotal(int $row, int $col, bool $multiply): float
|
|
|
171 |
{
|
|
|
172 |
$sum = 0.0;
|
|
|
173 |
for ($k = 0; $k < $this->sampleCount; ++$k) {
|
|
|
174 |
$val = $this->membership[$row][$k] ** $this->fuzziness;
|
|
|
175 |
if ($multiply) {
|
|
|
176 |
$val *= $this->samples[$k][$col];
|
|
|
177 |
}
|
|
|
178 |
|
|
|
179 |
$sum += $val;
|
|
|
180 |
}
|
|
|
181 |
|
|
|
182 |
return $sum;
|
|
|
183 |
}
|
|
|
184 |
|
|
|
185 |
protected function updateMembershipMatrix(): void
|
|
|
186 |
{
|
|
|
187 |
for ($i = 0; $i < $this->clustersNumber; ++$i) {
|
|
|
188 |
for ($k = 0; $k < $this->sampleCount; ++$k) {
|
|
|
189 |
$distCalc = $this->getDistanceCalc($i, $k);
|
|
|
190 |
$this->membership[$i][$k] = 1.0 / $distCalc;
|
|
|
191 |
}
|
|
|
192 |
}
|
|
|
193 |
}
|
|
|
194 |
|
|
|
195 |
protected function getDistanceCalc(int $row, int $col): float
|
|
|
196 |
{
|
|
|
197 |
$sum = 0.0;
|
|
|
198 |
$distance = new Euclidean();
|
|
|
199 |
$dist1 = $distance->distance(
|
|
|
200 |
$this->clusters[$row]->getCoordinates(),
|
|
|
201 |
$this->samples[$col]
|
|
|
202 |
);
|
|
|
203 |
|
|
|
204 |
for ($j = 0; $j < $this->clustersNumber; ++$j) {
|
|
|
205 |
$dist2 = $distance->distance(
|
|
|
206 |
$this->clusters[$j]->getCoordinates(),
|
|
|
207 |
$this->samples[$col]
|
|
|
208 |
);
|
|
|
209 |
|
|
|
210 |
$val = (($dist1 / $dist2) ** 2.0) / ($this->fuzziness - 1);
|
|
|
211 |
$sum += $val;
|
|
|
212 |
}
|
|
|
213 |
|
|
|
214 |
return $sum;
|
|
|
215 |
}
|
|
|
216 |
|
|
|
217 |
/**
|
|
|
218 |
* The objective is to minimize the distance between all data points
|
|
|
219 |
* and all cluster centers. This method returns the summation of all
|
|
|
220 |
* these distances
|
|
|
221 |
*/
|
|
|
222 |
protected function getObjective(): float
|
|
|
223 |
{
|
|
|
224 |
$sum = 0.0;
|
|
|
225 |
$distance = new Euclidean();
|
|
|
226 |
for ($i = 0; $i < $this->clustersNumber; ++$i) {
|
|
|
227 |
$clust = $this->clusters[$i]->getCoordinates();
|
|
|
228 |
for ($k = 0; $k < $this->sampleCount; ++$k) {
|
|
|
229 |
$point = $this->samples[$k];
|
|
|
230 |
$sum += $distance->distance($clust, $point);
|
|
|
231 |
}
|
|
|
232 |
}
|
|
|
233 |
|
|
|
234 |
return $sum;
|
|
|
235 |
}
|
|
|
236 |
}
|