Proyectos de Subversion Moodle

Rev

| Ultima modificación | Ver Log |

Rev Autor Línea Nro. Línea
1 efrain 1
<?php
2
 
3
declare(strict_types=1);
4
 
5
namespace Phpml\Clustering;
6
 
7
use Phpml\Math\Distance;
8
use Phpml\Math\Distance\Euclidean;
9
 
10
class DBSCAN implements Clusterer
11
{
12
    private const NOISE = -1;
13
 
14
    /**
15
     * @var float
16
     */
17
    private $epsilon;
18
 
19
    /**
20
     * @var int
21
     */
22
    private $minSamples;
23
 
24
    /**
25
     * @var Distance
26
     */
27
    private $distanceMetric;
28
 
29
    public function __construct(float $epsilon = 0.5, int $minSamples = 3, ?Distance $distanceMetric = null)
30
    {
31
        if ($distanceMetric === null) {
32
            $distanceMetric = new Euclidean();
33
        }
34
 
35
        $this->epsilon = $epsilon;
36
        $this->minSamples = $minSamples;
37
        $this->distanceMetric = $distanceMetric;
38
    }
39
 
40
    public function cluster(array $samples): array
41
    {
42
        $labels = [];
43
        $n = 0;
44
 
45
        foreach ($samples as $index => $sample) {
46
            if (isset($labels[$index])) {
47
                continue;
48
            }
49
 
50
            $neighborIndices = $this->getIndicesInRegion($sample, $samples);
51
 
52
            if (count($neighborIndices) < $this->minSamples) {
53
                $labels[$index] = self::NOISE;
54
 
55
                continue;
56
            }
57
 
58
            $labels[$index] = $n;
59
 
60
            $this->expandCluster($samples, $neighborIndices, $labels, $n);
61
 
62
            ++$n;
63
        }
64
 
65
        return $this->groupByCluster($samples, $labels, $n);
66
    }
67
 
68
    private function expandCluster(array $samples, array $seeds, array &$labels, int $n): void
69
    {
70
        while (($index = array_pop($seeds)) !== null) {
71
            if (isset($labels[$index])) {
72
                if ($labels[$index] === self::NOISE) {
73
                    $labels[$index] = $n;
74
                }
75
 
76
                continue;
77
            }
78
 
79
            $labels[$index] = $n;
80
 
81
            $sample = $samples[$index];
82
            $neighborIndices = $this->getIndicesInRegion($sample, $samples);
83
 
84
            if (count($neighborIndices) >= $this->minSamples) {
85
                $seeds = array_unique(array_merge($seeds, $neighborIndices));
86
            }
87
        }
88
    }
89
 
90
    private function getIndicesInRegion(array $center, array $samples): array
91
    {
92
        $indices = [];
93
 
94
        foreach ($samples as $index => $sample) {
95
            if ($this->distanceMetric->distance($center, $sample) < $this->epsilon) {
96
                $indices[] = $index;
97
            }
98
        }
99
 
100
        return $indices;
101
    }
102
 
103
    private function groupByCluster(array $samples, array $labels, int $n): array
104
    {
105
        $clusters = array_fill(0, $n, []);
106
 
107
        foreach ($samples as $index => $sample) {
108
            if ($labels[$index] !== self::NOISE) {
109
                $clusters[$labels[$index]][$index] = $sample;
110
            }
111
        }
112
 
113
        // Reindex (i.e. to 0, 1, 2, ...) integer indices for backword compatibility
114
        foreach ($clusters as $index => $cluster) {
115
            $clusters[$index] = array_merge($cluster, []);
116
        }
117
 
118
        return $clusters;
119
    }
120
}