1 |
efrain |
1 |
<?php
|
|
|
2 |
|
|
|
3 |
declare(strict_types=1);
|
|
|
4 |
|
|
|
5 |
namespace Phpml\Classification;
|
|
|
6 |
|
|
|
7 |
use Phpml\Exception\InvalidArgumentException;
|
|
|
8 |
use Phpml\Helper\Predictable;
|
|
|
9 |
use Phpml\Helper\Trainable;
|
|
|
10 |
use Phpml\Math\Statistic\Mean;
|
|
|
11 |
use Phpml\Math\Statistic\StandardDeviation;
|
|
|
12 |
|
|
|
13 |
class NaiveBayes implements Classifier
|
|
|
14 |
{
|
|
|
15 |
use Trainable;
|
|
|
16 |
use Predictable;
|
|
|
17 |
|
|
|
18 |
public const CONTINUOS = 1;
|
|
|
19 |
|
|
|
20 |
public const NOMINAL = 2;
|
|
|
21 |
|
|
|
22 |
public const EPSILON = 1e-10;
|
|
|
23 |
|
|
|
24 |
/**
|
|
|
25 |
* @var array
|
|
|
26 |
*/
|
|
|
27 |
private $std = [];
|
|
|
28 |
|
|
|
29 |
/**
|
|
|
30 |
* @var array
|
|
|
31 |
*/
|
|
|
32 |
private $mean = [];
|
|
|
33 |
|
|
|
34 |
/**
|
|
|
35 |
* @var array
|
|
|
36 |
*/
|
|
|
37 |
private $discreteProb = [];
|
|
|
38 |
|
|
|
39 |
/**
|
|
|
40 |
* @var array
|
|
|
41 |
*/
|
|
|
42 |
private $dataType = [];
|
|
|
43 |
|
|
|
44 |
/**
|
|
|
45 |
* @var array
|
|
|
46 |
*/
|
|
|
47 |
private $p = [];
|
|
|
48 |
|
|
|
49 |
/**
|
|
|
50 |
* @var int
|
|
|
51 |
*/
|
|
|
52 |
private $sampleCount = 0;
|
|
|
53 |
|
|
|
54 |
/**
|
|
|
55 |
* @var int
|
|
|
56 |
*/
|
|
|
57 |
private $featureCount = 0;
|
|
|
58 |
|
|
|
59 |
/**
|
|
|
60 |
* @var array
|
|
|
61 |
*/
|
|
|
62 |
private $labels = [];
|
|
|
63 |
|
|
|
64 |
public function train(array $samples, array $targets): void
|
|
|
65 |
{
|
|
|
66 |
$this->samples = array_merge($this->samples, $samples);
|
|
|
67 |
$this->targets = array_merge($this->targets, $targets);
|
|
|
68 |
$this->sampleCount = count($this->samples);
|
|
|
69 |
$this->featureCount = count($this->samples[0]);
|
|
|
70 |
|
|
|
71 |
$this->labels = array_map('strval', array_flip(array_flip($this->targets)));
|
|
|
72 |
foreach ($this->labels as $label) {
|
|
|
73 |
$samples = $this->getSamplesByLabel($label);
|
|
|
74 |
$this->p[$label] = count($samples) / $this->sampleCount;
|
|
|
75 |
$this->calculateStatistics($label, $samples);
|
|
|
76 |
}
|
|
|
77 |
}
|
|
|
78 |
|
|
|
79 |
/**
|
|
|
80 |
* @return mixed
|
|
|
81 |
*/
|
|
|
82 |
protected function predictSample(array $sample)
|
|
|
83 |
{
|
|
|
84 |
// Use NaiveBayes assumption for each label using:
|
|
|
85 |
// P(label|features) = P(label) * P(feature0|label) * P(feature1|label) .... P(featureN|label)
|
|
|
86 |
// Then compare probability for each class to determine which label is most likely
|
|
|
87 |
$predictions = [];
|
|
|
88 |
foreach ($this->labels as $label) {
|
|
|
89 |
$p = $this->p[$label];
|
|
|
90 |
for ($i = 0; $i < $this->featureCount; ++$i) {
|
|
|
91 |
$Plf = $this->sampleProbability($sample, $i, $label);
|
|
|
92 |
$p += $Plf;
|
|
|
93 |
}
|
|
|
94 |
|
|
|
95 |
$predictions[$label] = $p;
|
|
|
96 |
}
|
|
|
97 |
|
|
|
98 |
arsort($predictions, SORT_NUMERIC);
|
|
|
99 |
reset($predictions);
|
|
|
100 |
|
|
|
101 |
return key($predictions);
|
|
|
102 |
}
|
|
|
103 |
|
|
|
104 |
/**
|
|
|
105 |
* Calculates vital statistics for each label & feature. Stores these
|
|
|
106 |
* values in private array in order to avoid repeated calculation
|
|
|
107 |
*/
|
|
|
108 |
private function calculateStatistics(string $label, array $samples): void
|
|
|
109 |
{
|
|
|
110 |
$this->std[$label] = array_fill(0, $this->featureCount, 0);
|
|
|
111 |
$this->mean[$label] = array_fill(0, $this->featureCount, 0);
|
|
|
112 |
$this->dataType[$label] = array_fill(0, $this->featureCount, self::CONTINUOS);
|
|
|
113 |
$this->discreteProb[$label] = array_fill(0, $this->featureCount, self::CONTINUOS);
|
|
|
114 |
for ($i = 0; $i < $this->featureCount; ++$i) {
|
|
|
115 |
// Get the values of nth column in the samples array
|
|
|
116 |
// Mean::arithmetic is called twice, can be optimized
|
|
|
117 |
$values = array_column($samples, $i);
|
|
|
118 |
$numValues = count($values);
|
|
|
119 |
// if the values contain non-numeric data,
|
|
|
120 |
// then it should be treated as nominal/categorical/discrete column
|
|
|
121 |
if ($values !== array_filter($values, 'is_numeric')) {
|
|
|
122 |
$this->dataType[$label][$i] = self::NOMINAL;
|
|
|
123 |
$this->discreteProb[$label][$i] = array_count_values($values);
|
|
|
124 |
$db = &$this->discreteProb[$label][$i];
|
|
|
125 |
$db = array_map(function ($el) use ($numValues) {
|
|
|
126 |
return $el / $numValues;
|
|
|
127 |
}, $db);
|
|
|
128 |
} else {
|
|
|
129 |
$this->mean[$label][$i] = Mean::arithmetic($values);
|
|
|
130 |
// Add epsilon in order to avoid zero stdev
|
|
|
131 |
$this->std[$label][$i] = 1e-10 + StandardDeviation::population($values, false);
|
|
|
132 |
}
|
|
|
133 |
}
|
|
|
134 |
}
|
|
|
135 |
|
|
|
136 |
/**
|
|
|
137 |
* Calculates the probability P(label|sample_n)
|
|
|
138 |
*/
|
|
|
139 |
private function sampleProbability(array $sample, int $feature, string $label): float
|
|
|
140 |
{
|
|
|
141 |
if (!isset($sample[$feature])) {
|
|
|
142 |
throw new InvalidArgumentException('Missing feature. All samples must have equal number of features');
|
|
|
143 |
}
|
|
|
144 |
|
|
|
145 |
$value = $sample[$feature];
|
|
|
146 |
if ($this->dataType[$label][$feature] == self::NOMINAL) {
|
|
|
147 |
if (!isset($this->discreteProb[$label][$feature][$value]) ||
|
|
|
148 |
$this->discreteProb[$label][$feature][$value] == 0) {
|
|
|
149 |
return self::EPSILON;
|
|
|
150 |
}
|
|
|
151 |
|
|
|
152 |
return $this->discreteProb[$label][$feature][$value];
|
|
|
153 |
}
|
|
|
154 |
|
|
|
155 |
$std = $this->std[$label][$feature];
|
|
|
156 |
$mean = $this->mean[$label][$feature];
|
|
|
157 |
// Calculate the probability density by use of normal/Gaussian distribution
|
|
|
158 |
// Ref: https://en.wikipedia.org/wiki/Normal_distribution
|
|
|
159 |
//
|
|
|
160 |
// In order to avoid numerical errors because of small or zero values,
|
|
|
161 |
// some libraries adopt taking log of calculations such as
|
|
|
162 |
// scikit-learn did.
|
|
|
163 |
// (See : https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py)
|
|
|
164 |
$pdf = -0.5 * log(2.0 * M_PI * $std * $std);
|
|
|
165 |
$pdf -= 0.5 * (($value - $mean) ** 2) / ($std * $std);
|
|
|
166 |
|
|
|
167 |
return $pdf;
|
|
|
168 |
}
|
|
|
169 |
|
|
|
170 |
/**
|
|
|
171 |
* Return samples belonging to specific label
|
|
|
172 |
*/
|
|
|
173 |
private function getSamplesByLabel(string $label): array
|
|
|
174 |
{
|
|
|
175 |
$samples = [];
|
|
|
176 |
for ($i = 0; $i < $this->sampleCount; ++$i) {
|
|
|
177 |
if ($this->targets[$i] == $label) {
|
|
|
178 |
$samples[] = $this->samples[$i];
|
|
|
179 |
}
|
|
|
180 |
}
|
|
|
181 |
|
|
|
182 |
return $samples;
|
|
|
183 |
}
|
|
|
184 |
}
|