1 |
efrain |
1 |
<?php
|
|
|
2 |
|
|
|
3 |
declare(strict_types=1);
|
|
|
4 |
|
|
|
5 |
namespace Phpml\Classification\Linear;
|
|
|
6 |
|
|
|
7 |
use Phpml\Classification\DecisionTree;
|
|
|
8 |
use Phpml\Classification\WeightedClassifier;
|
|
|
9 |
use Phpml\Exception\InvalidArgumentException;
|
|
|
10 |
use Phpml\Helper\OneVsRest;
|
|
|
11 |
use Phpml\Helper\Predictable;
|
|
|
12 |
use Phpml\Math\Comparison;
|
|
|
13 |
|
|
|
14 |
class DecisionStump extends WeightedClassifier
|
|
|
15 |
{
|
|
|
16 |
use Predictable;
|
|
|
17 |
use OneVsRest;
|
|
|
18 |
|
|
|
19 |
public const AUTO_SELECT = -1;
|
|
|
20 |
|
|
|
21 |
/**
|
|
|
22 |
* @var int
|
|
|
23 |
*/
|
|
|
24 |
protected $givenColumnIndex;
|
|
|
25 |
|
|
|
26 |
/**
|
|
|
27 |
* @var array
|
|
|
28 |
*/
|
|
|
29 |
protected $binaryLabels = [];
|
|
|
30 |
|
|
|
31 |
/**
|
|
|
32 |
* Lowest error rate obtained while training/optimizing the model
|
|
|
33 |
*
|
|
|
34 |
* @var float
|
|
|
35 |
*/
|
|
|
36 |
protected $trainingErrorRate;
|
|
|
37 |
|
|
|
38 |
/**
|
|
|
39 |
* @var int
|
|
|
40 |
*/
|
|
|
41 |
protected $column;
|
|
|
42 |
|
|
|
43 |
/**
|
|
|
44 |
* @var mixed
|
|
|
45 |
*/
|
|
|
46 |
protected $value;
|
|
|
47 |
|
|
|
48 |
/**
|
|
|
49 |
* @var string
|
|
|
50 |
*/
|
|
|
51 |
protected $operator;
|
|
|
52 |
|
|
|
53 |
/**
|
|
|
54 |
* @var array
|
|
|
55 |
*/
|
|
|
56 |
protected $columnTypes = [];
|
|
|
57 |
|
|
|
58 |
/**
|
|
|
59 |
* @var int
|
|
|
60 |
*/
|
|
|
61 |
protected $featureCount;
|
|
|
62 |
|
|
|
63 |
/**
|
|
|
64 |
* @var float
|
|
|
65 |
*/
|
|
|
66 |
protected $numSplitCount = 100.0;
|
|
|
67 |
|
|
|
68 |
/**
|
|
|
69 |
* Distribution of samples in the leaves
|
|
|
70 |
*
|
|
|
71 |
* @var array
|
|
|
72 |
*/
|
|
|
73 |
protected $prob = [];
|
|
|
74 |
|
|
|
75 |
/**
|
|
|
76 |
* A DecisionStump classifier is a one-level deep DecisionTree. It is generally
|
|
|
77 |
* used with ensemble algorithms as in the weak classifier role. <br>
|
|
|
78 |
*
|
|
|
79 |
* If columnIndex is given, then the stump tries to produce a decision node
|
|
|
80 |
* on this column, otherwise in cases given the value of -1, the stump itself
|
|
|
81 |
* decides which column to take for the decision (Default DecisionTree behaviour)
|
|
|
82 |
*/
|
|
|
83 |
public function __construct(int $columnIndex = self::AUTO_SELECT)
|
|
|
84 |
{
|
|
|
85 |
$this->givenColumnIndex = $columnIndex;
|
|
|
86 |
}
|
|
|
87 |
|
|
|
88 |
public function __toString(): string
|
|
|
89 |
{
|
|
|
90 |
return "IF {$this->column} {$this->operator} {$this->value} ".
|
|
|
91 |
'THEN '.$this->binaryLabels[0].' '.
|
|
|
92 |
'ELSE '.$this->binaryLabels[1];
|
|
|
93 |
}
|
|
|
94 |
|
|
|
95 |
/**
|
|
|
96 |
* While finding best split point for a numerical valued column,
|
|
|
97 |
* DecisionStump looks for equally distanced values between minimum and maximum
|
|
|
98 |
* values in the column. Given <i>$count</i> value determines how many split
|
|
|
99 |
* points to be probed. The more split counts, the better performance but
|
|
|
100 |
* worse processing time (Default value is 10.0)
|
|
|
101 |
*/
|
|
|
102 |
public function setNumericalSplitCount(float $count): void
|
|
|
103 |
{
|
|
|
104 |
$this->numSplitCount = $count;
|
|
|
105 |
}
|
|
|
106 |
|
|
|
107 |
/**
|
|
|
108 |
* @throws InvalidArgumentException
|
|
|
109 |
*/
|
|
|
110 |
protected function trainBinary(array $samples, array $targets, array $labels): void
|
|
|
111 |
{
|
|
|
112 |
$this->binaryLabels = $labels;
|
|
|
113 |
$this->featureCount = count($samples[0]);
|
|
|
114 |
|
|
|
115 |
// If a column index is given, it should be among the existing columns
|
|
|
116 |
if ($this->givenColumnIndex > count($samples[0]) - 1) {
|
|
|
117 |
$this->givenColumnIndex = self::AUTO_SELECT;
|
|
|
118 |
}
|
|
|
119 |
|
|
|
120 |
// Check the size of the weights given.
|
|
|
121 |
// If none given, then assign 1 as a weight to each sample
|
|
|
122 |
if (count($this->weights) === 0) {
|
|
|
123 |
$this->weights = array_fill(0, count($samples), 1);
|
|
|
124 |
} else {
|
|
|
125 |
$numWeights = count($this->weights);
|
|
|
126 |
if ($numWeights !== count($samples)) {
|
|
|
127 |
throw new InvalidArgumentException('Number of sample weights does not match with number of samples');
|
|
|
128 |
}
|
|
|
129 |
}
|
|
|
130 |
|
|
|
131 |
// Determine type of each column as either "continuous" or "nominal"
|
|
|
132 |
$this->columnTypes = DecisionTree::getColumnTypes($samples);
|
|
|
133 |
|
|
|
134 |
// Try to find the best split in the columns of the dataset
|
|
|
135 |
// by calculating error rate for each split point in each column
|
|
|
136 |
$columns = range(0, count($samples[0]) - 1);
|
|
|
137 |
if ($this->givenColumnIndex !== self::AUTO_SELECT) {
|
|
|
138 |
$columns = [$this->givenColumnIndex];
|
|
|
139 |
}
|
|
|
140 |
|
|
|
141 |
$bestSplit = [
|
|
|
142 |
'value' => 0,
|
|
|
143 |
'operator' => '',
|
|
|
144 |
'prob' => [],
|
|
|
145 |
'column' => 0,
|
|
|
146 |
'trainingErrorRate' => 1.0,
|
|
|
147 |
];
|
|
|
148 |
foreach ($columns as $col) {
|
|
|
149 |
if ($this->columnTypes[$col] == DecisionTree::CONTINUOUS) {
|
|
|
150 |
$split = $this->getBestNumericalSplit($samples, $targets, $col);
|
|
|
151 |
} else {
|
|
|
152 |
$split = $this->getBestNominalSplit($samples, $targets, $col);
|
|
|
153 |
}
|
|
|
154 |
|
|
|
155 |
if ($split['trainingErrorRate'] < $bestSplit['trainingErrorRate']) {
|
|
|
156 |
$bestSplit = $split;
|
|
|
157 |
}
|
|
|
158 |
}
|
|
|
159 |
|
|
|
160 |
// Assign determined best values to the stump
|
|
|
161 |
foreach ($bestSplit as $name => $value) {
|
|
|
162 |
$this->{$name} = $value;
|
|
|
163 |
}
|
|
|
164 |
}
|
|
|
165 |
|
|
|
166 |
/**
|
|
|
167 |
* Determines best split point for the given column
|
|
|
168 |
*/
|
|
|
169 |
protected function getBestNumericalSplit(array $samples, array $targets, int $col): array
|
|
|
170 |
{
|
|
|
171 |
$values = array_column($samples, $col);
|
|
|
172 |
// Trying all possible points may be accomplished in two general ways:
|
|
|
173 |
// 1- Try all values in the $samples array ($values)
|
|
|
174 |
// 2- Artificially split the range of values into several parts and try them
|
|
|
175 |
// We choose the second one because it is faster in larger datasets
|
|
|
176 |
$minValue = min($values);
|
|
|
177 |
$maxValue = max($values);
|
|
|
178 |
$stepSize = ($maxValue - $minValue) / $this->numSplitCount;
|
|
|
179 |
|
|
|
180 |
$split = [];
|
|
|
181 |
|
|
|
182 |
foreach (['<=', '>'] as $operator) {
|
|
|
183 |
// Before trying all possible split points, let's first try
|
|
|
184 |
// the average value for the cut point
|
|
|
185 |
$threshold = array_sum($values) / (float) count($values);
|
|
|
186 |
[$errorRate, $prob] = $this->calculateErrorRate($targets, $threshold, $operator, $values);
|
|
|
187 |
if (!isset($split['trainingErrorRate']) || $errorRate < $split['trainingErrorRate']) {
|
|
|
188 |
$split = [
|
|
|
189 |
'value' => $threshold,
|
|
|
190 |
'operator' => $operator,
|
|
|
191 |
'prob' => $prob,
|
|
|
192 |
'column' => $col,
|
|
|
193 |
'trainingErrorRate' => $errorRate,
|
|
|
194 |
];
|
|
|
195 |
}
|
|
|
196 |
|
|
|
197 |
// Try other possible points one by one
|
|
|
198 |
for ($step = $minValue; $step <= $maxValue; $step += $stepSize) {
|
|
|
199 |
$threshold = (float) $step;
|
|
|
200 |
[$errorRate, $prob] = $this->calculateErrorRate($targets, $threshold, $operator, $values);
|
|
|
201 |
if ($errorRate < $split['trainingErrorRate']) {
|
|
|
202 |
$split = [
|
|
|
203 |
'value' => $threshold,
|
|
|
204 |
'operator' => $operator,
|
|
|
205 |
'prob' => $prob,
|
|
|
206 |
'column' => $col,
|
|
|
207 |
'trainingErrorRate' => $errorRate,
|
|
|
208 |
];
|
|
|
209 |
}
|
|
|
210 |
}// for
|
|
|
211 |
}
|
|
|
212 |
|
|
|
213 |
return $split;
|
|
|
214 |
}
|
|
|
215 |
|
|
|
216 |
protected function getBestNominalSplit(array $samples, array $targets, int $col): array
|
|
|
217 |
{
|
|
|
218 |
$values = array_column($samples, $col);
|
|
|
219 |
$valueCounts = array_count_values($values);
|
|
|
220 |
$distinctVals = array_keys($valueCounts);
|
|
|
221 |
|
|
|
222 |
$split = [];
|
|
|
223 |
|
|
|
224 |
foreach (['=', '!='] as $operator) {
|
|
|
225 |
foreach ($distinctVals as $val) {
|
|
|
226 |
[$errorRate, $prob] = $this->calculateErrorRate($targets, $val, $operator, $values);
|
|
|
227 |
if (!isset($split['trainingErrorRate']) || $split['trainingErrorRate'] < $errorRate) {
|
|
|
228 |
$split = [
|
|
|
229 |
'value' => $val,
|
|
|
230 |
'operator' => $operator,
|
|
|
231 |
'prob' => $prob,
|
|
|
232 |
'column' => $col,
|
|
|
233 |
'trainingErrorRate' => $errorRate,
|
|
|
234 |
];
|
|
|
235 |
}
|
|
|
236 |
}
|
|
|
237 |
}
|
|
|
238 |
|
|
|
239 |
return $split;
|
|
|
240 |
}
|
|
|
241 |
|
|
|
242 |
/**
|
|
|
243 |
* Calculates the ratio of wrong predictions based on the new threshold
|
|
|
244 |
* value given as the parameter
|
|
|
245 |
*/
|
|
|
246 |
protected function calculateErrorRate(array $targets, float $threshold, string $operator, array $values): array
|
|
|
247 |
{
|
|
|
248 |
$wrong = 0.0;
|
|
|
249 |
$prob = [];
|
|
|
250 |
$leftLabel = $this->binaryLabels[0];
|
|
|
251 |
$rightLabel = $this->binaryLabels[1];
|
|
|
252 |
|
|
|
253 |
foreach ($values as $index => $value) {
|
|
|
254 |
if (Comparison::compare($value, $threshold, $operator)) {
|
|
|
255 |
$predicted = $leftLabel;
|
|
|
256 |
} else {
|
|
|
257 |
$predicted = $rightLabel;
|
|
|
258 |
}
|
|
|
259 |
|
|
|
260 |
$target = $targets[$index];
|
|
|
261 |
if ((string) $predicted != (string) $targets[$index]) {
|
|
|
262 |
$wrong += $this->weights[$index];
|
|
|
263 |
}
|
|
|
264 |
|
|
|
265 |
if (!isset($prob[$predicted][$target])) {
|
|
|
266 |
$prob[$predicted][$target] = 0;
|
|
|
267 |
}
|
|
|
268 |
|
|
|
269 |
++$prob[$predicted][$target];
|
|
|
270 |
}
|
|
|
271 |
|
|
|
272 |
// Calculate probabilities: Proportion of labels in each leaf
|
|
|
273 |
$dist = array_combine($this->binaryLabels, array_fill(0, 2, 0.0));
|
|
|
274 |
foreach ($prob as $leaf => $counts) {
|
|
|
275 |
$leafTotal = (float) array_sum($prob[$leaf]);
|
|
|
276 |
foreach ($counts as $label => $count) {
|
|
|
277 |
if ((string) $leaf == (string) $label) {
|
|
|
278 |
$dist[$leaf] = $count / $leafTotal;
|
|
|
279 |
}
|
|
|
280 |
}
|
|
|
281 |
}
|
|
|
282 |
|
|
|
283 |
return [$wrong / (float) array_sum($this->weights), $dist];
|
|
|
284 |
}
|
|
|
285 |
|
|
|
286 |
/**
|
|
|
287 |
* Returns the probability of the sample of belonging to the given label
|
|
|
288 |
*
|
|
|
289 |
* Probability of a sample is calculated as the proportion of the label
|
|
|
290 |
* within the labels of the training samples in the decision node
|
|
|
291 |
*
|
|
|
292 |
* @param mixed $label
|
|
|
293 |
*/
|
|
|
294 |
protected function predictProbability(array $sample, $label): float
|
|
|
295 |
{
|
|
|
296 |
$predicted = $this->predictSampleBinary($sample);
|
|
|
297 |
if ((string) $predicted == (string) $label) {
|
|
|
298 |
return $this->prob[$label];
|
|
|
299 |
}
|
|
|
300 |
|
|
|
301 |
return 0.0;
|
|
|
302 |
}
|
|
|
303 |
|
|
|
304 |
/**
|
|
|
305 |
* @return mixed
|
|
|
306 |
*/
|
|
|
307 |
protected function predictSampleBinary(array $sample)
|
|
|
308 |
{
|
|
|
309 |
if (Comparison::compare($sample[$this->column], $this->value, $this->operator)) {
|
|
|
310 |
return $this->binaryLabels[0];
|
|
|
311 |
}
|
|
|
312 |
|
|
|
313 |
return $this->binaryLabels[1];
|
|
|
314 |
}
|
|
|
315 |
|
|
|
316 |
protected function resetBinary(): void
|
|
|
317 |
{
|
|
|
318 |
}
|
|
|
319 |
}
|