1 |
efrain |
1 |
<?php
|
|
|
2 |
|
|
|
3 |
declare(strict_types=1);
|
|
|
4 |
|
|
|
5 |
namespace Phpml\Classification\Ensemble;
|
|
|
6 |
|
|
|
7 |
use Phpml\Classification\Classifier;
|
|
|
8 |
use Phpml\Classification\DecisionTree;
|
|
|
9 |
use Phpml\Exception\InvalidArgumentException;
|
|
|
10 |
|
|
|
11 |
class RandomForest extends Bagging
|
|
|
12 |
{
|
|
|
13 |
/**
|
|
|
14 |
* @var float|string
|
|
|
15 |
*/
|
|
|
16 |
protected $featureSubsetRatio = 'log';
|
|
|
17 |
|
|
|
18 |
/**
|
|
|
19 |
* @var array|null
|
|
|
20 |
*/
|
|
|
21 |
protected $columnNames;
|
|
|
22 |
|
|
|
23 |
/**
|
|
|
24 |
* Initializes RandomForest with the given number of trees. More trees
|
|
|
25 |
* may increase the prediction performance while it will also substantially
|
|
|
26 |
* increase the processing time and the required memory
|
|
|
27 |
*/
|
|
|
28 |
public function __construct(int $numClassifier = 50)
|
|
|
29 |
{
|
|
|
30 |
parent::__construct($numClassifier);
|
|
|
31 |
|
|
|
32 |
$this->setSubsetRatio(1.0);
|
|
|
33 |
}
|
|
|
34 |
|
|
|
35 |
/**
|
|
|
36 |
* This method is used to determine how many of the original columns (features)
|
|
|
37 |
* will be used to construct subsets to train base classifiers.<br>
|
|
|
38 |
*
|
|
|
39 |
* Allowed values: 'sqrt', 'log' or any float number between 0.1 and 1.0 <br>
|
|
|
40 |
*
|
|
|
41 |
* Default value for the ratio is 'log' which results in log(numFeatures, 2) + 1
|
|
|
42 |
* features to be taken into consideration while selecting subspace of features
|
|
|
43 |
*
|
|
|
44 |
* @param mixed $ratio
|
|
|
45 |
*/
|
|
|
46 |
public function setFeatureSubsetRatio($ratio): self
|
|
|
47 |
{
|
|
|
48 |
if (!is_string($ratio) && !is_float($ratio)) {
|
|
|
49 |
throw new InvalidArgumentException('Feature subset ratio must be a string or a float');
|
|
|
50 |
}
|
|
|
51 |
|
|
|
52 |
if (is_float($ratio) && ($ratio < 0.1 || $ratio > 1.0)) {
|
|
|
53 |
throw new InvalidArgumentException('When a float is given, feature subset ratio should be between 0.1 and 1.0');
|
|
|
54 |
}
|
|
|
55 |
|
|
|
56 |
if (is_string($ratio) && $ratio !== 'sqrt' && $ratio !== 'log') {
|
|
|
57 |
throw new InvalidArgumentException("When a string is given, feature subset ratio can only be 'sqrt' or 'log'");
|
|
|
58 |
}
|
|
|
59 |
|
|
|
60 |
$this->featureSubsetRatio = $ratio;
|
|
|
61 |
|
|
|
62 |
return $this;
|
|
|
63 |
}
|
|
|
64 |
|
|
|
65 |
/**
|
|
|
66 |
* RandomForest algorithm is usable *only* with DecisionTree
|
|
|
67 |
*
|
|
|
68 |
* @return $this
|
|
|
69 |
*/
|
|
|
70 |
public function setClassifer(string $classifier, array $classifierOptions = [])
|
|
|
71 |
{
|
|
|
72 |
if ($classifier !== DecisionTree::class) {
|
|
|
73 |
throw new InvalidArgumentException('RandomForest can only use DecisionTree as base classifier');
|
|
|
74 |
}
|
|
|
75 |
|
|
|
76 |
parent::setClassifer($classifier, $classifierOptions);
|
|
|
77 |
|
|
|
78 |
return $this;
|
|
|
79 |
}
|
|
|
80 |
|
|
|
81 |
/**
|
|
|
82 |
* This will return an array including an importance value for
|
|
|
83 |
* each column in the given dataset. Importance values for a column
|
|
|
84 |
* is the average importance of that column in all trees in the forest
|
|
|
85 |
*/
|
|
|
86 |
public function getFeatureImportances(): array
|
|
|
87 |
{
|
|
|
88 |
// Traverse each tree and sum importance of the columns
|
|
|
89 |
$sum = [];
|
|
|
90 |
foreach ($this->classifiers as $tree) {
|
|
|
91 |
/** @var DecisionTree $tree */
|
|
|
92 |
$importances = $tree->getFeatureImportances();
|
|
|
93 |
|
|
|
94 |
foreach ($importances as $column => $importance) {
|
|
|
95 |
if (array_key_exists($column, $sum)) {
|
|
|
96 |
$sum[$column] += $importance;
|
|
|
97 |
} else {
|
|
|
98 |
$sum[$column] = $importance;
|
|
|
99 |
}
|
|
|
100 |
}
|
|
|
101 |
}
|
|
|
102 |
|
|
|
103 |
// Normalize & sort the importance values
|
|
|
104 |
$total = array_sum($sum);
|
|
|
105 |
array_walk($sum, function (&$importance) use ($total): void {
|
|
|
106 |
$importance /= $total;
|
|
|
107 |
});
|
|
|
108 |
arsort($sum);
|
|
|
109 |
|
|
|
110 |
return $sum;
|
|
|
111 |
}
|
|
|
112 |
|
|
|
113 |
/**
|
|
|
114 |
* A string array to represent the columns is given. They are useful
|
|
|
115 |
* when trying to print some information about the trees such as feature importances
|
|
|
116 |
*
|
|
|
117 |
* @return $this
|
|
|
118 |
*/
|
|
|
119 |
public function setColumnNames(array $names)
|
|
|
120 |
{
|
|
|
121 |
$this->columnNames = $names;
|
|
|
122 |
|
|
|
123 |
return $this;
|
|
|
124 |
}
|
|
|
125 |
|
|
|
126 |
/**
|
|
|
127 |
* @return DecisionTree
|
|
|
128 |
*/
|
|
|
129 |
protected function initSingleClassifier(Classifier $classifier): Classifier
|
|
|
130 |
{
|
|
|
131 |
if (!$classifier instanceof DecisionTree) {
|
|
|
132 |
throw new InvalidArgumentException(
|
|
|
133 |
sprintf('Classifier %s expected, got %s', DecisionTree::class, get_class($classifier))
|
|
|
134 |
);
|
|
|
135 |
}
|
|
|
136 |
|
|
|
137 |
if (is_float($this->featureSubsetRatio)) {
|
|
|
138 |
$featureCount = (int) ($this->featureSubsetRatio * $this->featureCount);
|
|
|
139 |
} elseif ($this->featureSubsetRatio === 'sqrt') {
|
|
|
140 |
$featureCount = (int) ($this->featureCount ** .5) + 1;
|
|
|
141 |
} else {
|
|
|
142 |
$featureCount = (int) log($this->featureCount, 2) + 1;
|
|
|
143 |
}
|
|
|
144 |
|
|
|
145 |
if ($featureCount >= $this->featureCount) {
|
|
|
146 |
$featureCount = $this->featureCount;
|
|
|
147 |
}
|
|
|
148 |
|
|
|
149 |
if ($this->columnNames === null) {
|
|
|
150 |
$this->columnNames = range(0, $this->featureCount - 1);
|
|
|
151 |
}
|
|
|
152 |
|
|
|
153 |
return $classifier
|
|
|
154 |
->setColumnNames($this->columnNames)
|
|
|
155 |
->setNumFeatures($featureCount);
|
|
|
156 |
}
|
|
|
157 |
}
|