| 1 |
efrain |
1 |
<?php
|
|
|
2 |
|
|
|
3 |
declare(strict_types=1);
|
|
|
4 |
|
|
|
5 |
namespace Phpml\Classification\Ensemble;
|
|
|
6 |
|
|
|
7 |
use Phpml\Classification\Classifier;
|
|
|
8 |
use Phpml\Classification\DecisionTree;
|
|
|
9 |
use Phpml\Exception\InvalidArgumentException;
|
|
|
10 |
use Phpml\Helper\Predictable;
|
|
|
11 |
use Phpml\Helper\Trainable;
|
|
|
12 |
use ReflectionClass;
|
|
|
13 |
|
|
|
14 |
class Bagging implements Classifier
|
|
|
15 |
{
|
|
|
16 |
use Trainable;
|
|
|
17 |
use Predictable;
|
|
|
18 |
|
|
|
19 |
/**
|
|
|
20 |
* @var int
|
|
|
21 |
*/
|
|
|
22 |
protected $numSamples;
|
|
|
23 |
|
|
|
24 |
/**
|
|
|
25 |
* @var int
|
|
|
26 |
*/
|
|
|
27 |
protected $featureCount = 0;
|
|
|
28 |
|
|
|
29 |
/**
|
|
|
30 |
* @var int
|
|
|
31 |
*/
|
|
|
32 |
protected $numClassifier;
|
|
|
33 |
|
|
|
34 |
/**
|
|
|
35 |
* @var string
|
|
|
36 |
*/
|
|
|
37 |
protected $classifier = DecisionTree::class;
|
|
|
38 |
|
|
|
39 |
/**
|
|
|
40 |
* @var array
|
|
|
41 |
*/
|
|
|
42 |
protected $classifierOptions = ['maxDepth' => 20];
|
|
|
43 |
|
|
|
44 |
/**
|
|
|
45 |
* @var array
|
|
|
46 |
*/
|
|
|
47 |
protected $classifiers = [];
|
|
|
48 |
|
|
|
49 |
/**
|
|
|
50 |
* @var float
|
|
|
51 |
*/
|
|
|
52 |
protected $subsetRatio = 0.7;
|
|
|
53 |
|
|
|
54 |
/**
|
|
|
55 |
* Creates an ensemble classifier with given number of base classifiers
|
|
|
56 |
* Default number of base classifiers is 50.
|
|
|
57 |
* The more number of base classifiers, the better performance but at the cost of procesing time
|
|
|
58 |
*/
|
|
|
59 |
public function __construct(int $numClassifier = 50)
|
|
|
60 |
{
|
|
|
61 |
$this->numClassifier = $numClassifier;
|
|
|
62 |
}
|
|
|
63 |
|
|
|
64 |
/**
|
|
|
65 |
* This method determines the ratio of samples used to create the 'bootstrap' subset,
|
|
|
66 |
* e.g., random samples drawn from the original dataset with replacement (allow repeats),
|
|
|
67 |
* to train each base classifier.
|
|
|
68 |
*
|
|
|
69 |
* @return $this
|
|
|
70 |
*
|
|
|
71 |
* @throws InvalidArgumentException
|
|
|
72 |
*/
|
|
|
73 |
public function setSubsetRatio(float $ratio)
|
|
|
74 |
{
|
|
|
75 |
if ($ratio < 0.1 || $ratio > 1.0) {
|
|
|
76 |
throw new InvalidArgumentException('Subset ratio should be between 0.1 and 1.0');
|
|
|
77 |
}
|
|
|
78 |
|
|
|
79 |
$this->subsetRatio = $ratio;
|
|
|
80 |
|
|
|
81 |
return $this;
|
|
|
82 |
}
|
|
|
83 |
|
|
|
84 |
/**
|
|
|
85 |
* This method is used to set the base classifier. Default value is
|
|
|
86 |
* DecisionTree::class, but any class that implements the <i>Classifier</i>
|
|
|
87 |
* can be used. <br>
|
|
|
88 |
* While giving the parameters of the classifier, the values should be
|
|
|
89 |
* given in the order they are in the constructor of the classifier and parameter
|
|
|
90 |
* names are neglected.
|
|
|
91 |
*
|
|
|
92 |
* @return $this
|
|
|
93 |
*/
|
|
|
94 |
public function setClassifer(string $classifier, array $classifierOptions = [])
|
|
|
95 |
{
|
|
|
96 |
$this->classifier = $classifier;
|
|
|
97 |
$this->classifierOptions = $classifierOptions;
|
|
|
98 |
|
|
|
99 |
return $this;
|
|
|
100 |
}
|
|
|
101 |
|
|
|
102 |
public function train(array $samples, array $targets): void
|
|
|
103 |
{
|
|
|
104 |
$this->samples = array_merge($this->samples, $samples);
|
|
|
105 |
$this->targets = array_merge($this->targets, $targets);
|
|
|
106 |
$this->featureCount = count($samples[0]);
|
|
|
107 |
$this->numSamples = count($this->samples);
|
|
|
108 |
|
|
|
109 |
// Init classifiers and train them with bootstrap samples
|
|
|
110 |
$this->classifiers = $this->initClassifiers();
|
|
|
111 |
$index = 0;
|
|
|
112 |
foreach ($this->classifiers as $classifier) {
|
|
|
113 |
[$samples, $targets] = $this->getRandomSubset($index);
|
|
|
114 |
$classifier->train($samples, $targets);
|
|
|
115 |
++$index;
|
|
|
116 |
}
|
|
|
117 |
}
|
|
|
118 |
|
|
|
119 |
protected function getRandomSubset(int $index): array
|
|
|
120 |
{
|
|
|
121 |
$samples = [];
|
|
|
122 |
$targets = [];
|
|
|
123 |
srand($index);
|
|
|
124 |
$bootstrapSize = $this->subsetRatio * $this->numSamples;
|
|
|
125 |
for ($i = 0; $i < $bootstrapSize; ++$i) {
|
|
|
126 |
$rand = random_int(0, $this->numSamples - 1);
|
|
|
127 |
$samples[] = $this->samples[$rand];
|
|
|
128 |
$targets[] = $this->targets[$rand];
|
|
|
129 |
}
|
|
|
130 |
|
|
|
131 |
return [$samples, $targets];
|
|
|
132 |
}
|
|
|
133 |
|
|
|
134 |
protected function initClassifiers(): array
|
|
|
135 |
{
|
|
|
136 |
$classifiers = [];
|
|
|
137 |
for ($i = 0; $i < $this->numClassifier; ++$i) {
|
|
|
138 |
$ref = new ReflectionClass($this->classifier);
|
|
|
139 |
/** @var Classifier $obj */
|
|
|
140 |
$obj = count($this->classifierOptions) === 0 ? $ref->newInstance() : $ref->newInstanceArgs($this->classifierOptions);
|
|
|
141 |
|
|
|
142 |
$classifiers[] = $this->initSingleClassifier($obj);
|
|
|
143 |
}
|
|
|
144 |
|
|
|
145 |
return $classifiers;
|
|
|
146 |
}
|
|
|
147 |
|
|
|
148 |
protected function initSingleClassifier(Classifier $classifier): Classifier
|
|
|
149 |
{
|
|
|
150 |
return $classifier;
|
|
|
151 |
}
|
|
|
152 |
|
|
|
153 |
/**
|
|
|
154 |
* @return mixed
|
|
|
155 |
*/
|
|
|
156 |
protected function predictSample(array $sample)
|
|
|
157 |
{
|
|
|
158 |
$predictions = [];
|
|
|
159 |
foreach ($this->classifiers as $classifier) {
|
|
|
160 |
/** @var Classifier $classifier */
|
|
|
161 |
$predictions[] = $classifier->predict($sample);
|
|
|
162 |
}
|
|
|
163 |
|
|
|
164 |
$counts = array_count_values($predictions);
|
|
|
165 |
arsort($counts);
|
|
|
166 |
reset($counts);
|
|
|
167 |
|
|
|
168 |
return key($counts);
|
|
|
169 |
}
|
|
|
170 |
}
|