1 |
efrain |
1 |
<?php
|
|
|
2 |
|
|
|
3 |
declare(strict_types=1);
|
|
|
4 |
|
|
|
5 |
namespace Phpml\Classification;
|
|
|
6 |
|
|
|
7 |
use Phpml\Classification\DecisionTree\DecisionTreeLeaf;
|
|
|
8 |
use Phpml\Exception\InvalidArgumentException;
|
|
|
9 |
use Phpml\Helper\Predictable;
|
|
|
10 |
use Phpml\Helper\Trainable;
|
|
|
11 |
use Phpml\Math\Statistic\Mean;
|
|
|
12 |
|
|
|
13 |
class DecisionTree implements Classifier
|
|
|
14 |
{
|
|
|
15 |
use Trainable;
|
|
|
16 |
use Predictable;
|
|
|
17 |
|
|
|
18 |
public const CONTINUOUS = 1;
|
|
|
19 |
|
|
|
20 |
public const NOMINAL = 2;
|
|
|
21 |
|
|
|
22 |
/**
|
|
|
23 |
* @var int
|
|
|
24 |
*/
|
|
|
25 |
public $actualDepth = 0;
|
|
|
26 |
|
|
|
27 |
/**
|
|
|
28 |
* @var array
|
|
|
29 |
*/
|
|
|
30 |
protected $columnTypes = [];
|
|
|
31 |
|
|
|
32 |
/**
|
|
|
33 |
* @var DecisionTreeLeaf
|
|
|
34 |
*/
|
|
|
35 |
protected $tree;
|
|
|
36 |
|
|
|
37 |
/**
|
|
|
38 |
* @var int
|
|
|
39 |
*/
|
|
|
40 |
protected $maxDepth;
|
|
|
41 |
|
|
|
42 |
/**
|
|
|
43 |
* @var array
|
|
|
44 |
*/
|
|
|
45 |
private $labels = [];
|
|
|
46 |
|
|
|
47 |
/**
|
|
|
48 |
* @var int
|
|
|
49 |
*/
|
|
|
50 |
private $featureCount = 0;
|
|
|
51 |
|
|
|
52 |
/**
|
|
|
53 |
* @var int
|
|
|
54 |
*/
|
|
|
55 |
private $numUsableFeatures = 0;
|
|
|
56 |
|
|
|
57 |
/**
|
|
|
58 |
* @var array
|
|
|
59 |
*/
|
|
|
60 |
private $selectedFeatures = [];
|
|
|
61 |
|
|
|
62 |
/**
|
|
|
63 |
* @var array|null
|
|
|
64 |
*/
|
|
|
65 |
private $featureImportances;
|
|
|
66 |
|
|
|
67 |
/**
|
|
|
68 |
* @var array
|
|
|
69 |
*/
|
|
|
70 |
private $columnNames = [];
|
|
|
71 |
|
|
|
72 |
public function __construct(int $maxDepth = 10)
|
|
|
73 |
{
|
|
|
74 |
$this->maxDepth = $maxDepth;
|
|
|
75 |
}
|
|
|
76 |
|
|
|
77 |
public function train(array $samples, array $targets): void
|
|
|
78 |
{
|
|
|
79 |
$this->samples = array_merge($this->samples, $samples);
|
|
|
80 |
$this->targets = array_merge($this->targets, $targets);
|
|
|
81 |
|
|
|
82 |
$this->featureCount = count($this->samples[0]);
|
|
|
83 |
$this->columnTypes = self::getColumnTypes($this->samples);
|
|
|
84 |
$this->labels = array_keys(array_count_values($this->targets));
|
|
|
85 |
$this->tree = $this->getSplitLeaf(range(0, count($this->samples) - 1));
|
|
|
86 |
|
|
|
87 |
// Each time the tree is trained, feature importances are reset so that
|
|
|
88 |
// we will have to compute it again depending on the new data
|
|
|
89 |
$this->featureImportances = null;
|
|
|
90 |
|
|
|
91 |
// If column names are given or computed before, then there is no
|
|
|
92 |
// need to init it and accidentally remove the previous given names
|
|
|
93 |
if ($this->columnNames === []) {
|
|
|
94 |
$this->columnNames = range(0, $this->featureCount - 1);
|
|
|
95 |
} elseif (count($this->columnNames) > $this->featureCount) {
|
|
|
96 |
$this->columnNames = array_slice($this->columnNames, 0, $this->featureCount);
|
|
|
97 |
} elseif (count($this->columnNames) < $this->featureCount) {
|
|
|
98 |
$this->columnNames = array_merge(
|
|
|
99 |
$this->columnNames,
|
|
|
100 |
range(count($this->columnNames), $this->featureCount - 1)
|
|
|
101 |
);
|
|
|
102 |
}
|
|
|
103 |
}
|
|
|
104 |
|
|
|
105 |
public static function getColumnTypes(array $samples): array
|
|
|
106 |
{
|
|
|
107 |
$types = [];
|
|
|
108 |
$featureCount = count($samples[0]);
|
|
|
109 |
for ($i = 0; $i < $featureCount; ++$i) {
|
|
|
110 |
$values = array_column($samples, $i);
|
|
|
111 |
$isCategorical = self::isCategoricalColumn($values);
|
|
|
112 |
$types[] = $isCategorical ? self::NOMINAL : self::CONTINUOUS;
|
|
|
113 |
}
|
|
|
114 |
|
|
|
115 |
return $types;
|
|
|
116 |
}
|
|
|
117 |
|
|
|
118 |
/**
|
|
|
119 |
* @param mixed $baseValue
|
|
|
120 |
*/
|
|
|
121 |
public function getGiniIndex($baseValue, array $colValues, array $targets): float
|
|
|
122 |
{
|
|
|
123 |
$countMatrix = [];
|
|
|
124 |
foreach ($this->labels as $label) {
|
|
|
125 |
$countMatrix[$label] = [0, 0];
|
|
|
126 |
}
|
|
|
127 |
|
|
|
128 |
foreach ($colValues as $index => $value) {
|
|
|
129 |
$label = $targets[$index];
|
|
|
130 |
$rowIndex = $value === $baseValue ? 0 : 1;
|
|
|
131 |
++$countMatrix[$label][$rowIndex];
|
|
|
132 |
}
|
|
|
133 |
|
|
|
134 |
$giniParts = [0, 0];
|
|
|
135 |
for ($i = 0; $i <= 1; ++$i) {
|
|
|
136 |
$part = 0;
|
|
|
137 |
$sum = array_sum(array_column($countMatrix, $i));
|
|
|
138 |
if ($sum > 0) {
|
|
|
139 |
foreach ($this->labels as $label) {
|
|
|
140 |
$part += ($countMatrix[$label][$i] / (float) $sum) ** 2;
|
|
|
141 |
}
|
|
|
142 |
}
|
|
|
143 |
|
|
|
144 |
$giniParts[$i] = (1 - $part) * $sum;
|
|
|
145 |
}
|
|
|
146 |
|
|
|
147 |
return array_sum($giniParts) / count($colValues);
|
|
|
148 |
}
|
|
|
149 |
|
|
|
150 |
/**
|
|
|
151 |
* This method is used to set number of columns to be used
|
|
|
152 |
* when deciding a split at an internal node of the tree. <br>
|
|
|
153 |
* If the value is given 0, then all features are used (default behaviour),
|
|
|
154 |
* otherwise the given value will be used as a maximum for number of columns
|
|
|
155 |
* randomly selected for each split operation.
|
|
|
156 |
*
|
|
|
157 |
* @return $this
|
|
|
158 |
*
|
|
|
159 |
* @throws InvalidArgumentException
|
|
|
160 |
*/
|
|
|
161 |
public function setNumFeatures(int $numFeatures)
|
|
|
162 |
{
|
|
|
163 |
if ($numFeatures < 0) {
|
|
|
164 |
throw new InvalidArgumentException('Selected column count should be greater or equal to zero');
|
|
|
165 |
}
|
|
|
166 |
|
|
|
167 |
$this->numUsableFeatures = $numFeatures;
|
|
|
168 |
|
|
|
169 |
return $this;
|
|
|
170 |
}
|
|
|
171 |
|
|
|
172 |
/**
|
|
|
173 |
* A string array to represent columns. Useful when HTML output or
|
|
|
174 |
* column importances are desired to be inspected.
|
|
|
175 |
*
|
|
|
176 |
* @return $this
|
|
|
177 |
*
|
|
|
178 |
* @throws InvalidArgumentException
|
|
|
179 |
*/
|
|
|
180 |
public function setColumnNames(array $names)
|
|
|
181 |
{
|
|
|
182 |
if ($this->featureCount !== 0 && count($names) !== $this->featureCount) {
|
|
|
183 |
throw new InvalidArgumentException(sprintf('Length of the given array should be equal to feature count %s', $this->featureCount));
|
|
|
184 |
}
|
|
|
185 |
|
|
|
186 |
$this->columnNames = $names;
|
|
|
187 |
|
|
|
188 |
return $this;
|
|
|
189 |
}
|
|
|
190 |
|
|
|
191 |
public function getHtml(): string
|
|
|
192 |
{
|
|
|
193 |
return $this->tree->getHTML($this->columnNames);
|
|
|
194 |
}
|
|
|
195 |
|
|
|
196 |
/**
|
|
|
197 |
* This will return an array including an importance value for
|
|
|
198 |
* each column in the given dataset. The importance values are
|
|
|
199 |
* normalized and their total makes 1.<br/>
|
|
|
200 |
*/
|
|
|
201 |
public function getFeatureImportances(): array
|
|
|
202 |
{
|
|
|
203 |
if ($this->featureImportances !== null) {
|
|
|
204 |
return $this->featureImportances;
|
|
|
205 |
}
|
|
|
206 |
|
|
|
207 |
$sampleCount = count($this->samples);
|
|
|
208 |
$this->featureImportances = [];
|
|
|
209 |
foreach ($this->columnNames as $column => $columnName) {
|
|
|
210 |
$nodes = $this->getSplitNodesByColumn($column, $this->tree);
|
|
|
211 |
|
|
|
212 |
$importance = 0;
|
|
|
213 |
foreach ($nodes as $node) {
|
|
|
214 |
$importance += $node->getNodeImpurityDecrease($sampleCount);
|
|
|
215 |
}
|
|
|
216 |
|
|
|
217 |
$this->featureImportances[$columnName] = $importance;
|
|
|
218 |
}
|
|
|
219 |
|
|
|
220 |
// Normalize & sort the importances
|
|
|
221 |
$total = array_sum($this->featureImportances);
|
|
|
222 |
if ($total > 0) {
|
|
|
223 |
array_walk($this->featureImportances, function (&$importance) use ($total): void {
|
|
|
224 |
$importance /= $total;
|
|
|
225 |
});
|
|
|
226 |
arsort($this->featureImportances);
|
|
|
227 |
}
|
|
|
228 |
|
|
|
229 |
return $this->featureImportances;
|
|
|
230 |
}
|
|
|
231 |
|
|
|
232 |
protected function getSplitLeaf(array $records, int $depth = 0): DecisionTreeLeaf
|
|
|
233 |
{
|
|
|
234 |
$split = $this->getBestSplit($records);
|
|
|
235 |
$split->level = $depth;
|
|
|
236 |
if ($this->actualDepth < $depth) {
|
|
|
237 |
$this->actualDepth = $depth;
|
|
|
238 |
}
|
|
|
239 |
|
|
|
240 |
// Traverse all records to see if all records belong to the same class,
|
|
|
241 |
// otherwise group the records so that we can classify the leaf
|
|
|
242 |
// in case maximum depth is reached
|
|
|
243 |
$leftRecords = [];
|
|
|
244 |
$rightRecords = [];
|
|
|
245 |
$remainingTargets = [];
|
|
|
246 |
$prevRecord = null;
|
|
|
247 |
$allSame = true;
|
|
|
248 |
|
|
|
249 |
foreach ($records as $recordNo) {
|
|
|
250 |
// Check if the previous record is the same with the current one
|
|
|
251 |
$record = $this->samples[$recordNo];
|
|
|
252 |
if ($prevRecord !== null && $prevRecord != $record) {
|
|
|
253 |
$allSame = false;
|
|
|
254 |
}
|
|
|
255 |
|
|
|
256 |
$prevRecord = $record;
|
|
|
257 |
|
|
|
258 |
// According to the split criteron, this record will
|
|
|
259 |
// belong to either left or the right side in the next split
|
|
|
260 |
if ($split->evaluate($record)) {
|
|
|
261 |
$leftRecords[] = $recordNo;
|
|
|
262 |
} else {
|
|
|
263 |
$rightRecords[] = $recordNo;
|
|
|
264 |
}
|
|
|
265 |
|
|
|
266 |
// Group remaining targets
|
|
|
267 |
$target = $this->targets[$recordNo];
|
|
|
268 |
if (!array_key_exists($target, $remainingTargets)) {
|
|
|
269 |
$remainingTargets[$target] = 1;
|
|
|
270 |
} else {
|
|
|
271 |
++$remainingTargets[$target];
|
|
|
272 |
}
|
|
|
273 |
}
|
|
|
274 |
|
|
|
275 |
if ($allSame || $depth >= $this->maxDepth || count($remainingTargets) === 1) {
|
|
|
276 |
$split->isTerminal = true;
|
|
|
277 |
arsort($remainingTargets);
|
|
|
278 |
$split->classValue = (string) key($remainingTargets);
|
|
|
279 |
} else {
|
|
|
280 |
if (isset($leftRecords[0])) {
|
|
|
281 |
$split->leftLeaf = $this->getSplitLeaf($leftRecords, $depth + 1);
|
|
|
282 |
}
|
|
|
283 |
|
|
|
284 |
if (isset($rightRecords[0])) {
|
|
|
285 |
$split->rightLeaf = $this->getSplitLeaf($rightRecords, $depth + 1);
|
|
|
286 |
}
|
|
|
287 |
}
|
|
|
288 |
|
|
|
289 |
return $split;
|
|
|
290 |
}
|
|
|
291 |
|
|
|
292 |
protected function getBestSplit(array $records): DecisionTreeLeaf
|
|
|
293 |
{
|
|
|
294 |
$targets = array_intersect_key($this->targets, array_flip($records));
|
|
|
295 |
$samples = (array) array_combine(
|
|
|
296 |
$records,
|
|
|
297 |
$this->preprocess(array_intersect_key($this->samples, array_flip($records)))
|
|
|
298 |
);
|
|
|
299 |
$bestGiniVal = 1;
|
|
|
300 |
$bestSplit = null;
|
|
|
301 |
$features = $this->getSelectedFeatures();
|
|
|
302 |
foreach ($features as $i) {
|
|
|
303 |
$colValues = [];
|
|
|
304 |
foreach ($samples as $index => $row) {
|
|
|
305 |
$colValues[$index] = $row[$i];
|
|
|
306 |
}
|
|
|
307 |
|
|
|
308 |
$counts = array_count_values($colValues);
|
|
|
309 |
arsort($counts);
|
|
|
310 |
$baseValue = key($counts);
|
|
|
311 |
if ($baseValue === null) {
|
|
|
312 |
continue;
|
|
|
313 |
}
|
|
|
314 |
|
|
|
315 |
$gini = $this->getGiniIndex($baseValue, $colValues, $targets);
|
|
|
316 |
if ($bestSplit === null || $bestGiniVal > $gini) {
|
|
|
317 |
$split = new DecisionTreeLeaf();
|
|
|
318 |
$split->value = $baseValue;
|
|
|
319 |
$split->giniIndex = $gini;
|
|
|
320 |
$split->columnIndex = $i;
|
|
|
321 |
$split->isContinuous = $this->columnTypes[$i] === self::CONTINUOUS;
|
|
|
322 |
$split->records = $records;
|
|
|
323 |
|
|
|
324 |
// If a numeric column is to be selected, then
|
|
|
325 |
// the original numeric value and the selected operator
|
|
|
326 |
// will also be saved into the leaf for future access
|
|
|
327 |
if ($this->columnTypes[$i] === self::CONTINUOUS) {
|
|
|
328 |
$matches = [];
|
|
|
329 |
preg_match("/^([<>=]{1,2})\s*(.*)/", (string) $split->value, $matches);
|
|
|
330 |
$split->operator = $matches[1];
|
|
|
331 |
$split->numericValue = (float) $matches[2];
|
|
|
332 |
}
|
|
|
333 |
|
|
|
334 |
$bestSplit = $split;
|
|
|
335 |
$bestGiniVal = $gini;
|
|
|
336 |
}
|
|
|
337 |
}
|
|
|
338 |
|
|
|
339 |
return $bestSplit;
|
|
|
340 |
}
|
|
|
341 |
|
|
|
342 |
/**
|
|
|
343 |
* Returns available features/columns to the tree for the decision making
|
|
|
344 |
* process. <br>
|
|
|
345 |
*
|
|
|
346 |
* If a number is given with setNumFeatures() method, then a random selection
|
|
|
347 |
* of features up to this number is returned. <br>
|
|
|
348 |
*
|
|
|
349 |
* If some features are manually selected by use of setSelectedFeatures(),
|
|
|
350 |
* then only these features are returned <br>
|
|
|
351 |
*
|
|
|
352 |
* If any of above methods were not called beforehand, then all features
|
|
|
353 |
* are returned by default.
|
|
|
354 |
*/
|
|
|
355 |
protected function getSelectedFeatures(): array
|
|
|
356 |
{
|
|
|
357 |
$allFeatures = range(0, $this->featureCount - 1);
|
|
|
358 |
if ($this->numUsableFeatures === 0 && count($this->selectedFeatures) === 0) {
|
|
|
359 |
return $allFeatures;
|
|
|
360 |
}
|
|
|
361 |
|
|
|
362 |
if (count($this->selectedFeatures) > 0) {
|
|
|
363 |
return $this->selectedFeatures;
|
|
|
364 |
}
|
|
|
365 |
|
|
|
366 |
$numFeatures = $this->numUsableFeatures;
|
|
|
367 |
if ($numFeatures > $this->featureCount) {
|
|
|
368 |
$numFeatures = $this->featureCount;
|
|
|
369 |
}
|
|
|
370 |
|
|
|
371 |
shuffle($allFeatures);
|
|
|
372 |
$selectedFeatures = array_slice($allFeatures, 0, $numFeatures);
|
|
|
373 |
sort($selectedFeatures);
|
|
|
374 |
|
|
|
375 |
return $selectedFeatures;
|
|
|
376 |
}
|
|
|
377 |
|
|
|
378 |
protected function preprocess(array $samples): array
|
|
|
379 |
{
|
|
|
380 |
// Detect and convert continuous data column values into
|
|
|
381 |
// discrete values by using the median as a threshold value
|
|
|
382 |
$columns = [];
|
|
|
383 |
for ($i = 0; $i < $this->featureCount; ++$i) {
|
|
|
384 |
$values = array_column($samples, $i);
|
|
|
385 |
if ($this->columnTypes[$i] == self::CONTINUOUS) {
|
|
|
386 |
$median = Mean::median($values);
|
|
|
387 |
foreach ($values as &$value) {
|
|
|
388 |
if ($value <= $median) {
|
|
|
389 |
$value = "<= {$median}";
|
|
|
390 |
} else {
|
|
|
391 |
$value = "> {$median}";
|
|
|
392 |
}
|
|
|
393 |
}
|
|
|
394 |
}
|
|
|
395 |
|
|
|
396 |
$columns[] = $values;
|
|
|
397 |
}
|
|
|
398 |
|
|
|
399 |
// Below method is a strange yet very simple & efficient method
|
|
|
400 |
// to get the transpose of a 2D array
|
|
|
401 |
return array_map(null, ...$columns);
|
|
|
402 |
}
|
|
|
403 |
|
|
|
404 |
protected static function isCategoricalColumn(array $columnValues): bool
|
|
|
405 |
{
|
|
|
406 |
$count = count($columnValues);
|
|
|
407 |
|
|
|
408 |
// There are two main indicators that *may* show whether a
|
|
|
409 |
// column is composed of discrete set of values:
|
|
|
410 |
// 1- Column may contain string values and non-float values
|
|
|
411 |
// 2- Number of unique values in the column is only a small fraction of
|
|
|
412 |
// all values in that column (Lower than or equal to %20 of all values)
|
|
|
413 |
$numericValues = array_filter($columnValues, 'is_numeric');
|
|
|
414 |
$floatValues = array_filter($columnValues, 'is_float');
|
|
|
415 |
if (count($floatValues) > 0) {
|
|
|
416 |
return false;
|
|
|
417 |
}
|
|
|
418 |
|
|
|
419 |
if (count($numericValues) !== $count) {
|
|
|
420 |
return true;
|
|
|
421 |
}
|
|
|
422 |
|
|
|
423 |
$distinctValues = array_count_values($columnValues);
|
|
|
424 |
|
|
|
425 |
return count($distinctValues) <= $count / 5;
|
|
|
426 |
}
|
|
|
427 |
|
|
|
428 |
/**
|
|
|
429 |
* Used to set predefined features to consider while deciding which column to use for a split
|
|
|
430 |
*/
|
|
|
431 |
protected function setSelectedFeatures(array $selectedFeatures): void
|
|
|
432 |
{
|
|
|
433 |
$this->selectedFeatures = $selectedFeatures;
|
|
|
434 |
}
|
|
|
435 |
|
|
|
436 |
/**
|
|
|
437 |
* Collects and returns an array of internal nodes that use the given
|
|
|
438 |
* column as a split criterion
|
|
|
439 |
*/
|
|
|
440 |
protected function getSplitNodesByColumn(int $column, DecisionTreeLeaf $node): array
|
|
|
441 |
{
|
|
|
442 |
if ($node->isTerminal) {
|
|
|
443 |
return [];
|
|
|
444 |
}
|
|
|
445 |
|
|
|
446 |
$nodes = [];
|
|
|
447 |
if ($node->columnIndex === $column) {
|
|
|
448 |
$nodes[] = $node;
|
|
|
449 |
}
|
|
|
450 |
|
|
|
451 |
$lNodes = [];
|
|
|
452 |
$rNodes = [];
|
|
|
453 |
if ($node->leftLeaf !== null) {
|
|
|
454 |
$lNodes = $this->getSplitNodesByColumn($column, $node->leftLeaf);
|
|
|
455 |
}
|
|
|
456 |
|
|
|
457 |
if ($node->rightLeaf !== null) {
|
|
|
458 |
$rNodes = $this->getSplitNodesByColumn($column, $node->rightLeaf);
|
|
|
459 |
}
|
|
|
460 |
|
|
|
461 |
return array_merge($nodes, $lNodes, $rNodes);
|
|
|
462 |
}
|
|
|
463 |
|
|
|
464 |
/**
|
|
|
465 |
* @return mixed
|
|
|
466 |
*/
|
|
|
467 |
protected function predictSample(array $sample)
|
|
|
468 |
{
|
|
|
469 |
$node = $this->tree;
|
|
|
470 |
do {
|
|
|
471 |
if ($node->isTerminal) {
|
|
|
472 |
return $node->classValue;
|
|
|
473 |
}
|
|
|
474 |
|
|
|
475 |
if ($node->evaluate($sample)) {
|
|
|
476 |
$node = $node->leftLeaf;
|
|
|
477 |
} else {
|
|
|
478 |
$node = $node->rightLeaf;
|
|
|
479 |
}
|
|
|
480 |
} while ($node);
|
|
|
481 |
|
|
|
482 |
return $this->labels[0];
|
|
|
483 |
}
|
|
|
484 |
}
|