1 |
efrain |
1 |
<?php
|
|
|
2 |
// This file is part of Moodle - http://moodle.org/
|
|
|
3 |
//
|
|
|
4 |
// Moodle is free software: you can redistribute it and/or modify
|
|
|
5 |
// it under the terms of the GNU General Public License as published by
|
|
|
6 |
// the Free Software Foundation, either version 3 of the License, or
|
|
|
7 |
// (at your option) any later version.
|
|
|
8 |
//
|
|
|
9 |
// Moodle is distributed in the hope that it will be useful,
|
|
|
10 |
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
11 |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
12 |
// GNU General Public License for more details.
|
|
|
13 |
//
|
|
|
14 |
// You should have received a copy of the GNU General Public License
|
|
|
15 |
// along with Moodle. If not, see <http://www.gnu.org/licenses/>.
|
|
|
16 |
|
|
|
17 |
/**
|
|
|
18 |
* Php predictions processor
|
|
|
19 |
*
|
|
|
20 |
* @package mlbackend_php
|
|
|
21 |
* @copyright 2016 David Monllao {@link http://www.davidmonllao.com}
|
|
|
22 |
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
|
|
|
23 |
*/
|
|
|
24 |
|
|
|
25 |
namespace mlbackend_php;
|
|
|
26 |
|
|
|
27 |
defined('MOODLE_INTERNAL') || die();
|
|
|
28 |
|
|
|
29 |
use Phpml\Preprocessing\Normalizer;
|
|
|
30 |
use Phpml\CrossValidation\RandomSplit;
|
|
|
31 |
use Phpml\Dataset\ArrayDataset;
|
|
|
32 |
use Phpml\ModelManager;
|
|
|
33 |
use Phpml\Classification\Linear\LogisticRegression;
|
|
|
34 |
use Phpml\Metric\ClassificationReport;
|
|
|
35 |
|
|
|
36 |
/**
|
|
|
37 |
* PHP predictions processor.
|
|
|
38 |
*
|
|
|
39 |
* @package mlbackend_php
|
|
|
40 |
* @copyright 2016 David Monllao {@link http://www.davidmonllao.com}
|
|
|
41 |
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
|
|
|
42 |
*/
|
|
|
43 |
class processor implements \core_analytics\classifier, \core_analytics\regressor, \core_analytics\packable {
|
|
|
44 |
|
|
|
45 |
/**
|
|
|
46 |
* Size of training / prediction batches.
|
|
|
47 |
*/
|
|
|
48 |
const BATCH_SIZE = 5000;
|
|
|
49 |
|
|
|
50 |
/**
|
|
|
51 |
* Number of train iterations.
|
|
|
52 |
*/
|
|
|
53 |
const TRAIN_ITERATIONS = 500;
|
|
|
54 |
|
|
|
55 |
/**
|
|
|
56 |
* File name of the serialised model.
|
|
|
57 |
*/
|
|
|
58 |
const MODEL_FILENAME = 'model.ser';
|
|
|
59 |
|
|
|
60 |
/**
|
|
|
61 |
* @var bool
|
|
|
62 |
*/
|
|
|
63 |
protected $limitedsize = false;
|
|
|
64 |
|
|
|
65 |
/**
|
|
|
66 |
* Checks if the processor is ready to use.
|
|
|
67 |
*
|
|
|
68 |
* @return bool
|
|
|
69 |
*/
|
|
|
70 |
public function is_ready() {
|
|
|
71 |
if (version_compare(phpversion(), '7.0.0') < 0) {
|
|
|
72 |
return get_string('errorphp7required', 'mlbackend_php');
|
|
|
73 |
}
|
|
|
74 |
return true;
|
|
|
75 |
}
|
|
|
76 |
|
|
|
77 |
/**
|
|
|
78 |
* Delete the stored models.
|
|
|
79 |
*
|
|
|
80 |
* @param string $uniqueid
|
|
|
81 |
* @param string $modelversionoutputdir
|
|
|
82 |
* @return null
|
|
|
83 |
*/
|
|
|
84 |
public function clear_model($uniqueid, $modelversionoutputdir) {
|
|
|
85 |
remove_dir($modelversionoutputdir);
|
|
|
86 |
}
|
|
|
87 |
|
|
|
88 |
/**
|
|
|
89 |
* Delete the output directory.
|
|
|
90 |
*
|
|
|
91 |
* @param string $modeloutputdir
|
|
|
92 |
* @param string $uniqueid
|
|
|
93 |
* @return null
|
|
|
94 |
*/
|
|
|
95 |
public function delete_output_dir($modeloutputdir, $uniqueid) {
|
|
|
96 |
remove_dir($modeloutputdir);
|
|
|
97 |
}
|
|
|
98 |
|
|
|
99 |
/**
|
|
|
100 |
* Train this processor classification model using the provided supervised learning dataset.
|
|
|
101 |
*
|
|
|
102 |
* @param string $uniqueid
|
|
|
103 |
* @param \stored_file $dataset
|
|
|
104 |
* @param string $outputdir
|
|
|
105 |
* @return \stdClass
|
|
|
106 |
*/
|
|
|
107 |
public function train_classification($uniqueid, \stored_file $dataset, $outputdir) {
|
|
|
108 |
|
|
|
109 |
$modelfilepath = $this->get_model_filepath($outputdir);
|
|
|
110 |
|
|
|
111 |
$modelmanager = new ModelManager();
|
|
|
112 |
|
|
|
113 |
if (file_exists($modelfilepath)) {
|
|
|
114 |
$classifier = $modelmanager->restoreFromFile($modelfilepath);
|
|
|
115 |
} else {
|
|
|
116 |
$classifier = $this->instantiate_algorithm();
|
|
|
117 |
}
|
|
|
118 |
|
|
|
119 |
$fh = $dataset->get_content_file_handle();
|
|
|
120 |
|
|
|
121 |
// The first lines are var names and the second one values.
|
|
|
122 |
$metadata = $this->extract_metadata($fh);
|
|
|
123 |
|
|
|
124 |
// Skip headers.
|
|
|
125 |
fgets($fh);
|
|
|
126 |
|
|
|
127 |
$samples = array();
|
|
|
128 |
$targets = array();
|
|
|
129 |
while (($data = fgetcsv($fh)) !== false) {
|
|
|
130 |
$sampledata = array_map('floatval', $data);
|
|
|
131 |
$samples[] = array_slice($sampledata, 0, $metadata['nfeatures']);
|
|
|
132 |
$targets[] = intval($data[$metadata['nfeatures']]);
|
|
|
133 |
|
|
|
134 |
$nsamples = count($samples);
|
|
|
135 |
if ($nsamples === self::BATCH_SIZE) {
|
|
|
136 |
// Training it batches to avoid running out of memory.
|
|
|
137 |
$classifier->partialTrain($samples, $targets, json_decode($metadata['targetclasses']));
|
|
|
138 |
$samples = array();
|
|
|
139 |
$targets = array();
|
|
|
140 |
}
|
|
|
141 |
if (empty($morethan1sample) && $nsamples > 1) {
|
|
|
142 |
$morethan1sample = true;
|
|
|
143 |
}
|
|
|
144 |
}
|
|
|
145 |
fclose($fh);
|
|
|
146 |
|
|
|
147 |
if (empty($morethan1sample)) {
|
|
|
148 |
$resultobj = new \stdClass();
|
|
|
149 |
$resultobj->status = \core_analytics\model::NO_DATASET;
|
|
|
150 |
$resultobj->info = array();
|
|
|
151 |
return $resultobj;
|
|
|
152 |
}
|
|
|
153 |
|
|
|
154 |
// Train the remaining samples.
|
|
|
155 |
if ($samples) {
|
|
|
156 |
$classifier->partialTrain($samples, $targets, json_decode($metadata['targetclasses']));
|
|
|
157 |
}
|
|
|
158 |
|
|
|
159 |
$resultobj = new \stdClass();
|
|
|
160 |
$resultobj->status = \core_analytics\model::OK;
|
|
|
161 |
$resultobj->info = array();
|
|
|
162 |
|
|
|
163 |
// Store the trained model.
|
|
|
164 |
$modelmanager->saveToFile($classifier, $modelfilepath);
|
|
|
165 |
|
|
|
166 |
return $resultobj;
|
|
|
167 |
}
|
|
|
168 |
|
|
|
169 |
/**
|
|
|
170 |
* Classifies the provided dataset samples.
|
|
|
171 |
*
|
|
|
172 |
* @param string $uniqueid
|
|
|
173 |
* @param \stored_file $dataset
|
|
|
174 |
* @param string $outputdir
|
|
|
175 |
* @return \stdClass
|
|
|
176 |
*/
|
|
|
177 |
public function classify($uniqueid, \stored_file $dataset, $outputdir) {
|
|
|
178 |
|
|
|
179 |
$classifier = $this->load_classifier($outputdir);
|
|
|
180 |
|
|
|
181 |
$fh = $dataset->get_content_file_handle();
|
|
|
182 |
|
|
|
183 |
// The first lines are var names and the second one values.
|
|
|
184 |
$metadata = $this->extract_metadata($fh);
|
|
|
185 |
|
|
|
186 |
// Skip headers.
|
|
|
187 |
fgets($fh);
|
|
|
188 |
|
|
|
189 |
$sampleids = array();
|
|
|
190 |
$samples = array();
|
|
|
191 |
$predictions = array();
|
|
|
192 |
while (($data = fgetcsv($fh)) !== false) {
|
|
|
193 |
$sampledata = array_map('floatval', $data);
|
|
|
194 |
$sampleids[] = $data[0];
|
|
|
195 |
$samples[] = array_slice($sampledata, 1, $metadata['nfeatures']);
|
|
|
196 |
|
|
|
197 |
if (count($samples) === self::BATCH_SIZE) {
|
|
|
198 |
// Prediction it batches to avoid running out of memory.
|
|
|
199 |
|
|
|
200 |
// Append predictions incrementally, we want $sampleids keys in sync with $predictions keys.
|
|
|
201 |
$newpredictions = $classifier->predict($samples);
|
|
|
202 |
foreach ($newpredictions as $prediction) {
|
|
|
203 |
array_push($predictions, $prediction);
|
|
|
204 |
}
|
|
|
205 |
$samples = array();
|
|
|
206 |
}
|
|
|
207 |
}
|
|
|
208 |
fclose($fh);
|
|
|
209 |
|
|
|
210 |
// Finish the remaining predictions.
|
|
|
211 |
if ($samples) {
|
|
|
212 |
$predictions = $predictions + $classifier->predict($samples);
|
|
|
213 |
}
|
|
|
214 |
|
|
|
215 |
$resultobj = new \stdClass();
|
|
|
216 |
$resultobj->status = \core_analytics\model::OK;
|
|
|
217 |
$resultobj->info = array();
|
|
|
218 |
|
|
|
219 |
foreach ($predictions as $index => $prediction) {
|
|
|
220 |
$resultobj->predictions[$index] = array($sampleids[$index], $prediction);
|
|
|
221 |
}
|
|
|
222 |
|
|
|
223 |
return $resultobj;
|
|
|
224 |
}
|
|
|
225 |
|
|
|
226 |
/**
|
|
|
227 |
* Evaluates this processor classification model using the provided supervised learning dataset.
|
|
|
228 |
*
|
|
|
229 |
* During evaluation we need to shuffle the evaluation dataset samples to detect deviated results,
|
|
|
230 |
* if the dataset is massive we can not load everything into memory. We know that 2GB is the
|
|
|
231 |
* minimum memory limit we should have (\core_analytics\model::heavy_duty_mode), if we substract the memory
|
|
|
232 |
* that we already consumed and the memory that Phpml algorithms will need we should still have at
|
|
|
233 |
* least 500MB of memory, which should be enough to evaluate a model. In any case this is a robust
|
|
|
234 |
* solution that will work for all sites but it should minimize memory limit problems. Site admins
|
|
|
235 |
* can still set $CFG->mlbackend_php_no_evaluation_limits to true to skip this 500MB limit.
|
|
|
236 |
*
|
|
|
237 |
* @param string $uniqueid
|
|
|
238 |
* @param float $maxdeviation
|
|
|
239 |
* @param int $niterations
|
|
|
240 |
* @param \stored_file $dataset
|
|
|
241 |
* @param string $outputdir
|
|
|
242 |
* @param string $trainedmodeldir
|
|
|
243 |
* @return \stdClass
|
|
|
244 |
*/
|
|
|
245 |
public function evaluate_classification($uniqueid, $maxdeviation, $niterations, \stored_file $dataset,
|
|
|
246 |
$outputdir, $trainedmodeldir) {
|
|
|
247 |
$fh = $dataset->get_content_file_handle();
|
|
|
248 |
|
|
|
249 |
if ($trainedmodeldir) {
|
|
|
250 |
// We overwrite the number of iterations as the results will always be the same.
|
|
|
251 |
$niterations = 1;
|
|
|
252 |
$classifier = $this->load_classifier($trainedmodeldir);
|
|
|
253 |
}
|
|
|
254 |
|
|
|
255 |
// The first lines are var names and the second one values.
|
|
|
256 |
$metadata = $this->extract_metadata($fh);
|
|
|
257 |
|
|
|
258 |
// Skip headers.
|
|
|
259 |
fgets($fh);
|
|
|
260 |
|
|
|
261 |
if (empty($CFG->mlbackend_php_no_evaluation_limits)) {
|
|
|
262 |
$samplessize = 0;
|
|
|
263 |
$limit = get_real_size('500MB');
|
|
|
264 |
|
|
|
265 |
// Just an approximation, will depend on PHP version, compile options...
|
|
|
266 |
// Double size + zval struct (6 bytes + 8 bytes + 16 bytes) + array bucket (96 bytes)
|
|
|
267 |
// https://nikic.github.io/2011/12/12/How-big-are-PHP-arrays-really-Hint-BIG.html.
|
|
|
268 |
$floatsize = (PHP_INT_SIZE * 2) + 6 + 8 + 16 + 96;
|
|
|
269 |
}
|
|
|
270 |
|
|
|
271 |
$samples = array();
|
|
|
272 |
$targets = array();
|
|
|
273 |
while (($data = fgetcsv($fh)) !== false) {
|
|
|
274 |
$sampledata = array_map('floatval', $data);
|
|
|
275 |
|
|
|
276 |
$samples[] = array_slice($sampledata, 0, $metadata['nfeatures']);
|
|
|
277 |
$targets[] = intval($data[$metadata['nfeatures']]);
|
|
|
278 |
|
|
|
279 |
if (empty($CFG->mlbackend_php_no_evaluation_limits)) {
|
|
|
280 |
// We allow admins to disable evaluation memory usage limits by modifying config.php.
|
|
|
281 |
|
|
|
282 |
// We will have plenty of missing values in the dataset so it should be a conservative approximation.
|
|
|
283 |
$samplessize = $samplessize + (count($sampledata) * $floatsize);
|
|
|
284 |
|
|
|
285 |
// Stop fetching more samples.
|
|
|
286 |
if ($samplessize >= $limit) {
|
|
|
287 |
$this->limitedsize = true;
|
|
|
288 |
break;
|
|
|
289 |
}
|
|
|
290 |
}
|
|
|
291 |
}
|
|
|
292 |
fclose($fh);
|
|
|
293 |
|
|
|
294 |
// We need at least 2 samples belonging to each target.
|
|
|
295 |
$counts = array_count_values($targets);
|
|
|
296 |
$ntargets = count(explode(',', $metadata['targetclasses']));
|
|
|
297 |
foreach ($counts as $count) {
|
|
|
298 |
if ($count < 2) {
|
|
|
299 |
$notenoughdata = true;
|
|
|
300 |
}
|
|
|
301 |
}
|
|
|
302 |
if ($ntargets > count($counts)) {
|
|
|
303 |
$notenoughdata = true;
|
|
|
304 |
}
|
|
|
305 |
if (!empty($notenoughdata)) {
|
|
|
306 |
$resultobj = new \stdClass();
|
|
|
307 |
$resultobj->status = \core_analytics\model::NOT_ENOUGH_DATA;
|
|
|
308 |
$resultobj->score = 0;
|
|
|
309 |
$resultobj->info = array(get_string('errornotenoughdata', 'mlbackend_php'));
|
|
|
310 |
return $resultobj;
|
|
|
311 |
}
|
|
|
312 |
|
|
|
313 |
$scores = array();
|
|
|
314 |
|
|
|
315 |
// Evaluate the model multiple times to confirm the results are not significantly random due to a short amount of data.
|
|
|
316 |
for ($i = 0; $i < $niterations; $i++) {
|
|
|
317 |
|
|
|
318 |
if (!$trainedmodeldir) {
|
|
|
319 |
$classifier = $this->instantiate_algorithm();
|
|
|
320 |
|
|
|
321 |
// Split up the dataset in classifier and testing.
|
|
|
322 |
$data = new RandomSplit(new ArrayDataset($samples, $targets), 0.2);
|
|
|
323 |
|
|
|
324 |
$classifier->train($data->getTrainSamples(), $data->getTrainLabels());
|
|
|
325 |
$predictedlabels = $classifier->predict($data->getTestSamples());
|
|
|
326 |
$report = new ClassificationReport($data->getTestLabels(), $predictedlabels,
|
|
|
327 |
ClassificationReport::WEIGHTED_AVERAGE);
|
|
|
328 |
} else {
|
|
|
329 |
$predictedlabels = $classifier->predict($samples);
|
|
|
330 |
$report = new ClassificationReport($targets, $predictedlabels,
|
|
|
331 |
ClassificationReport::WEIGHTED_AVERAGE);
|
|
|
332 |
}
|
|
|
333 |
$averages = $report->getAverage();
|
|
|
334 |
$scores[] = $averages['f1score'];
|
|
|
335 |
}
|
|
|
336 |
|
|
|
337 |
// Let's fill the results changing the returned status code depending on the phi-related calculated metrics.
|
|
|
338 |
return $this->get_evaluation_result_object($dataset, $scores, $maxdeviation);
|
|
|
339 |
}
|
|
|
340 |
|
|
|
341 |
/**
|
|
|
342 |
* Returns the results objects from all evaluations.
|
|
|
343 |
*
|
|
|
344 |
* @param \stored_file $dataset
|
|
|
345 |
* @param array $scores
|
|
|
346 |
* @param float $maxdeviation
|
|
|
347 |
* @return \stdClass
|
|
|
348 |
*/
|
|
|
349 |
protected function get_evaluation_result_object(\stored_file $dataset, $scores, $maxdeviation) {
|
|
|
350 |
|
|
|
351 |
// Average f1 score of all evaluations as final score.
|
|
|
352 |
if (count($scores) === 1) {
|
|
|
353 |
$avgscore = reset($scores);
|
|
|
354 |
} else {
|
|
|
355 |
$avgscore = \Phpml\Math\Statistic\Mean::arithmetic($scores);
|
|
|
356 |
}
|
|
|
357 |
|
|
|
358 |
// Standard deviation should ideally be calculated against the area under the curve.
|
|
|
359 |
if (count($scores) === 1) {
|
|
|
360 |
$modeldev = 0;
|
|
|
361 |
} else {
|
|
|
362 |
$modeldev = \Phpml\Math\Statistic\StandardDeviation::population($scores);
|
|
|
363 |
}
|
|
|
364 |
|
|
|
365 |
// Let's fill the results object.
|
|
|
366 |
$resultobj = new \stdClass();
|
|
|
367 |
|
|
|
368 |
// Zero is ok, now we add other bits if something is not right.
|
|
|
369 |
$resultobj->status = \core_analytics\model::OK;
|
|
|
370 |
$resultobj->info = array();
|
|
|
371 |
$resultobj->score = $avgscore;
|
|
|
372 |
|
|
|
373 |
// If each iteration results varied too much we need more data to confirm that this is a valid model.
|
|
|
374 |
if ($modeldev > $maxdeviation) {
|
|
|
375 |
$resultobj->status = $resultobj->status + \core_analytics\model::NOT_ENOUGH_DATA;
|
|
|
376 |
$a = new \stdClass();
|
|
|
377 |
$a->deviation = $modeldev;
|
|
|
378 |
$a->accepteddeviation = $maxdeviation;
|
|
|
379 |
$resultobj->info[] = get_string('errornotenoughdatadev', 'mlbackend_php', $a);
|
|
|
380 |
}
|
|
|
381 |
|
|
|
382 |
if ($resultobj->score < \core_analytics\model::MIN_SCORE) {
|
|
|
383 |
$resultobj->status = $resultobj->status + \core_analytics\model::LOW_SCORE;
|
|
|
384 |
$a = new \stdClass();
|
|
|
385 |
$a->score = $resultobj->score;
|
|
|
386 |
$a->minscore = \core_analytics\model::MIN_SCORE;
|
|
|
387 |
$resultobj->info[] = get_string('errorlowscore', 'mlbackend_php', $a);
|
|
|
388 |
}
|
|
|
389 |
|
|
|
390 |
if ($this->limitedsize === true) {
|
|
|
391 |
$resultobj->info[] = get_string('datasetsizelimited', 'mlbackend_php', display_size($dataset->get_filesize()));
|
|
|
392 |
}
|
|
|
393 |
|
|
|
394 |
return $resultobj;
|
|
|
395 |
}
|
|
|
396 |
|
|
|
397 |
/**
|
|
|
398 |
* Loads the pre-trained classifier.
|
|
|
399 |
*
|
|
|
400 |
* @throws \moodle_exception
|
|
|
401 |
* @param string $outputdir
|
|
|
402 |
* @return \Phpml\Classification\Linear\LogisticRegression
|
|
|
403 |
*/
|
|
|
404 |
protected function load_classifier($outputdir) {
|
|
|
405 |
$modelfilepath = $this->get_model_filepath($outputdir);
|
|
|
406 |
|
|
|
407 |
if (!file_exists($modelfilepath)) {
|
|
|
408 |
throw new \moodle_exception('errorcantloadmodel', 'mlbackend_php', '', $modelfilepath);
|
|
|
409 |
}
|
|
|
410 |
|
|
|
411 |
$modelmanager = new ModelManager();
|
|
|
412 |
return $modelmanager->restoreFromFile($modelfilepath);
|
|
|
413 |
}
|
|
|
414 |
|
|
|
415 |
/**
|
|
|
416 |
* Train this processor regression model using the provided supervised learning dataset.
|
|
|
417 |
*
|
|
|
418 |
* @throws new \coding_exception
|
|
|
419 |
* @param string $uniqueid
|
|
|
420 |
* @param \stored_file $dataset
|
|
|
421 |
* @param string $outputdir
|
|
|
422 |
* @return \stdClass
|
|
|
423 |
*/
|
|
|
424 |
public function train_regression($uniqueid, \stored_file $dataset, $outputdir) {
|
|
|
425 |
throw new \coding_exception('This predictor does not support regression yet.');
|
|
|
426 |
}
|
|
|
427 |
|
|
|
428 |
/**
|
|
|
429 |
* Estimates linear values for the provided dataset samples.
|
|
|
430 |
*
|
|
|
431 |
* @throws new \coding_exception
|
|
|
432 |
* @param string $uniqueid
|
|
|
433 |
* @param \stored_file $dataset
|
|
|
434 |
* @param mixed $outputdir
|
|
|
435 |
* @return void
|
|
|
436 |
*/
|
|
|
437 |
public function estimate($uniqueid, \stored_file $dataset, $outputdir) {
|
|
|
438 |
throw new \coding_exception('This predictor does not support regression yet.');
|
|
|
439 |
}
|
|
|
440 |
|
|
|
441 |
/**
|
|
|
442 |
* Evaluates this processor regression model using the provided supervised learning dataset.
|
|
|
443 |
*
|
|
|
444 |
* @throws new \coding_exception
|
|
|
445 |
* @param string $uniqueid
|
|
|
446 |
* @param float $maxdeviation
|
|
|
447 |
* @param int $niterations
|
|
|
448 |
* @param \stored_file $dataset
|
|
|
449 |
* @param string $outputdir
|
|
|
450 |
* @param string $trainedmodeldir
|
|
|
451 |
* @return \stdClass
|
|
|
452 |
*/
|
|
|
453 |
public function evaluate_regression($uniqueid, $maxdeviation, $niterations, \stored_file $dataset,
|
|
|
454 |
$outputdir, $trainedmodeldir) {
|
|
|
455 |
throw new \coding_exception('This predictor does not support regression yet.');
|
|
|
456 |
}
|
|
|
457 |
|
|
|
458 |
/**
|
|
|
459 |
* Exports the machine learning model.
|
|
|
460 |
*
|
|
|
461 |
* @throws \moodle_exception
|
|
|
462 |
* @param string $uniqueid The model unique id
|
|
|
463 |
* @param string $modeldir The directory that contains the trained model.
|
|
|
464 |
* @return string The path to the directory that contains the exported model.
|
|
|
465 |
*/
|
|
|
466 |
public function export(string $uniqueid, string $modeldir): string {
|
|
|
467 |
|
|
|
468 |
$modelfilepath = $this->get_model_filepath($modeldir);
|
|
|
469 |
|
|
|
470 |
if (!file_exists($modelfilepath)) {
|
|
|
471 |
throw new \moodle_exception('errorexportmodelresult', 'analytics');
|
|
|
472 |
}
|
|
|
473 |
|
|
|
474 |
// We can use the actual $modeldir as the directory is not modified during export, just copied into a zip.
|
|
|
475 |
return $modeldir;
|
|
|
476 |
}
|
|
|
477 |
|
|
|
478 |
/**
|
|
|
479 |
* Imports the provided machine learning model.
|
|
|
480 |
*
|
|
|
481 |
* @param string $uniqueid The model unique id
|
|
|
482 |
* @param string $modeldir The directory that will contain the trained model.
|
|
|
483 |
* @param string $importdir The directory that contains the files to import.
|
|
|
484 |
* @return bool Success
|
|
|
485 |
*/
|
|
|
486 |
public function import(string $uniqueid, string $modeldir, string $importdir): bool {
|
|
|
487 |
|
|
|
488 |
$importmodelfilepath = $this->get_model_filepath($importdir);
|
|
|
489 |
$modelfilepath = $this->get_model_filepath($modeldir);
|
|
|
490 |
|
|
|
491 |
$modelmanager = new ModelManager();
|
|
|
492 |
|
|
|
493 |
// Copied from ModelManager::restoreFromFile to validate the serialised contents
|
|
|
494 |
// before restoring them.
|
|
|
495 |
$importconfig = file_get_contents($importmodelfilepath);
|
|
|
496 |
|
|
|
497 |
// Clean stuff like function calls.
|
|
|
498 |
$importconfig = preg_replace('/[^a-zA-Z0-9\{\}%\.\*\;\,\:\"\-\0\\\]/', '', $importconfig);
|
|
|
499 |
|
|
|
500 |
$object = unserialize($importconfig,
|
|
|
501 |
['allowed_classes' => ['Phpml\\Classification\\Linear\\LogisticRegression']]);
|
|
|
502 |
if (!$object) {
|
|
|
503 |
return false;
|
|
|
504 |
}
|
|
|
505 |
|
|
|
506 |
if (get_class($object) == '__PHP_Incomplete_Class') {
|
|
|
507 |
return false;
|
|
|
508 |
}
|
|
|
509 |
|
|
|
510 |
$classifier = $modelmanager->restoreFromFile($importmodelfilepath);
|
|
|
511 |
|
|
|
512 |
// This would override any previous classifier.
|
|
|
513 |
$modelmanager->saveToFile($classifier, $modelfilepath);
|
|
|
514 |
|
|
|
515 |
return true;
|
|
|
516 |
}
|
|
|
517 |
|
|
|
518 |
/**
|
|
|
519 |
* Returns the path to the serialised model file in the provided directory.
|
|
|
520 |
*
|
|
|
521 |
* @param string $modeldir The model directory
|
|
|
522 |
* @return string The model file
|
|
|
523 |
*/
|
|
|
524 |
protected function get_model_filepath(string $modeldir): string {
|
|
|
525 |
// Output directory is already unique to the model.
|
|
|
526 |
return $modeldir . DIRECTORY_SEPARATOR . self::MODEL_FILENAME;
|
|
|
527 |
}
|
|
|
528 |
|
|
|
529 |
/**
|
|
|
530 |
* Extracts metadata from the dataset file.
|
|
|
531 |
*
|
|
|
532 |
* The file poiter should be located at the top of the file.
|
|
|
533 |
*
|
|
|
534 |
* @param resource $fh
|
|
|
535 |
* @return array
|
|
|
536 |
*/
|
|
|
537 |
protected function extract_metadata($fh) {
|
|
|
538 |
$metadata = fgetcsv($fh);
|
|
|
539 |
return array_combine($metadata, fgetcsv($fh));
|
|
|
540 |
}
|
|
|
541 |
|
|
|
542 |
/**
|
|
|
543 |
* Instantiates the ML algorithm.
|
|
|
544 |
*
|
|
|
545 |
* @return \Phpml\Classification\Linear\LogisticRegression
|
|
|
546 |
*/
|
|
|
547 |
protected function instantiate_algorithm(): \Phpml\Classification\Linear\LogisticRegression {
|
|
|
548 |
return new LogisticRegression(self::TRAIN_ITERATIONS, true,
|
|
|
549 |
LogisticRegression::CONJUGATE_GRAD_TRAINING, 'log');
|
|
|
550 |
}
|
|
|
551 |
}
|