1 |
efrain |
1 |
// Copyright 2019 Google
|
|
|
2 |
//
|
|
|
3 |
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
4 |
// you may not use this file except in compliance with the License.
|
|
|
5 |
// You may obtain a copy of the License at
|
|
|
6 |
//
|
|
|
7 |
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
8 |
//
|
|
|
9 |
// Unless required by applicable law or agreed to in writing, software
|
|
|
10 |
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
11 |
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
12 |
// See the License for the specific language governing permissions and
|
|
|
13 |
// limitations under the License.
|
|
|
14 |
|
|
|
15 |
#include "Crashlytics/Crashlytics/Unwind/FIRCLSUnwind_x86.h"
|
|
|
16 |
#include "Crashlytics/Crashlytics/Unwind/Compact/FIRCLSCompactUnwind_Private.h"
|
|
|
17 |
#include "Crashlytics/Crashlytics/Helpers/FIRCLSDefines.h"
|
|
|
18 |
#include "Crashlytics/Crashlytics/Unwind/Dwarf/FIRCLSDwarfUnwind.h"
|
|
|
19 |
#include "Crashlytics/Crashlytics/Helpers/FIRCLSFeatures.h"
|
|
|
20 |
#include "Crashlytics/Crashlytics/Unwind/FIRCLSUnwind.h"
|
|
|
21 |
#include "Crashlytics/Crashlytics/Unwind/FIRCLSUnwind_arch.h"
|
|
|
22 |
#include "Crashlytics/Crashlytics/Helpers/FIRCLSUtility.h"
|
|
|
23 |
|
|
|
24 |
#if CLS_CPU_X86
|
|
|
25 |
|
|
|
26 |
static bool FIRCLSCompactUnwindBPFrame(compact_unwind_encoding_t encoding,
|
|
|
27 |
FIRCLSThreadContext* registers);
|
|
|
28 |
static bool FIRCLSCompactUnwindFrameless(compact_unwind_encoding_t encoding,
|
|
|
29 |
FIRCLSThreadContext* registers,
|
|
|
30 |
uintptr_t functionStart,
|
|
|
31 |
bool indirect);
|
|
|
32 |
|
|
|
33 |
#if CLS_COMPACT_UNWINDING_SUPPORTED
|
|
|
34 |
bool FIRCLSCompactUnwindComputeRegisters(FIRCLSCompactUnwindContext* context,
|
|
|
35 |
FIRCLSCompactUnwindResult* result,
|
|
|
36 |
FIRCLSThreadContext* registers) {
|
|
|
37 |
if (!FIRCLSIsValidPointer(context) || !FIRCLSIsValidPointer(result) ||
|
|
|
38 |
!FIRCLSIsValidPointer(registers)) {
|
|
|
39 |
FIRCLSSDKLogError("invalid inputs\n");
|
|
|
40 |
return false;
|
|
|
41 |
}
|
|
|
42 |
|
|
|
43 |
FIRCLSSDKLogDebug("Computing registers for encoding %x\n", result->encoding);
|
|
|
44 |
|
|
|
45 |
switch (result->encoding & CLS_X86_MODE_MASK) {
|
|
|
46 |
case CLS_X86_MODE_BP_FRAME:
|
|
|
47 |
return FIRCLSCompactUnwindBPFrame(result->encoding, registers);
|
|
|
48 |
case CLS_X86_MODE_STACK_IMMD:
|
|
|
49 |
return FIRCLSCompactUnwindFrameless(result->encoding, registers, result->functionStart,
|
|
|
50 |
false);
|
|
|
51 |
case CLS_X86_MODE_STACK_IND:
|
|
|
52 |
return FIRCLSCompactUnwindFrameless(result->encoding, registers, result->functionStart, true);
|
|
|
53 |
case CLS_X86_MODE_DWARF:
|
|
|
54 |
return FIRCLSCompactUnwindDwarfFrame(context, result->encoding & CLS_X86_DWARF_SECTION_OFFSET,
|
|
|
55 |
registers);
|
|
|
56 |
default:
|
|
|
57 |
FIRCLSSDKLogError("Invalid encoding %x\n", result->encoding);
|
|
|
58 |
break;
|
|
|
59 |
}
|
|
|
60 |
|
|
|
61 |
return false;
|
|
|
62 |
}
|
|
|
63 |
#endif
|
|
|
64 |
|
|
|
65 |
static bool FIRCLSCompactUnwindBPFrame(compact_unwind_encoding_t encoding,
|
|
|
66 |
FIRCLSThreadContext* registers) {
|
|
|
67 |
// this is the plain-vanilla frame pointer process
|
|
|
68 |
|
|
|
69 |
// uint32_t offset = GET_BITS_WITH_MASK(encoding, UNWIND_X86_EBP_FRAME_OFFSET);
|
|
|
70 |
// uint32_t locations = GET_BITS_WITH_MASK(encoding, UNWIND_X86_64_RBP_FRAME_REGISTERS);
|
|
|
71 |
|
|
|
72 |
// TODO: pretty sure we do need to restore registers here, so that if a subsequent frame needs
|
|
|
73 |
// these results, they will be correct
|
|
|
74 |
|
|
|
75 |
// Checkout CompactUnwinder.hpp in libunwind for how to do this. Since we don't make use of any of
|
|
|
76 |
// those registers for a stacktrace only, there's nothing we need do with them.
|
|
|
77 |
|
|
|
78 |
// read the values from the stack
|
|
|
79 |
const uintptr_t framePointer = FIRCLSThreadContextGetFramePointer(registers);
|
|
|
80 |
uintptr_t stack[2];
|
|
|
81 |
|
|
|
82 |
if (!FIRCLSReadMemory((vm_address_t)framePointer, stack, sizeof(stack))) {
|
|
|
83 |
// unable to read the first stack frame
|
|
|
84 |
FIRCLSSDKLog("Error: failed to read memory at address %p\n", (void*)framePointer);
|
|
|
85 |
return false;
|
|
|
86 |
}
|
|
|
87 |
|
|
|
88 |
if (!FIRCLSThreadContextSetPC(registers, stack[1])) {
|
|
|
89 |
return false;
|
|
|
90 |
}
|
|
|
91 |
|
|
|
92 |
if (!FIRCLSThreadContextSetFramePointer(registers, stack[0])) {
|
|
|
93 |
return false;
|
|
|
94 |
}
|
|
|
95 |
|
|
|
96 |
if (!FIRCLSThreadContextSetStackPointer(registers,
|
|
|
97 |
FIRCLSUnwindStackPointerFromFramePointer(framePointer))) {
|
|
|
98 |
return false;
|
|
|
99 |
}
|
|
|
100 |
|
|
|
101 |
return true;
|
|
|
102 |
}
|
|
|
103 |
|
|
|
104 |
bool FIRCLSUnwindWithStackScanning(FIRCLSThreadContext* registers) {
|
|
|
105 |
vm_address_t start = (vm_address_t)FIRCLSThreadContextGetStackPointer(registers);
|
|
|
106 |
vm_address_t end = (vm_address_t)FIRCLSThreadContextGetFramePointer(registers);
|
|
|
107 |
|
|
|
108 |
uintptr_t newPC = 0;
|
|
|
109 |
|
|
|
110 |
if (!FIRCLSUnwindFirstExecutableAddress(start, end, (vm_address_t*)&newPC)) {
|
|
|
111 |
return false;
|
|
|
112 |
}
|
|
|
113 |
|
|
|
114 |
return FIRCLSThreadContextSetPC(registers, newPC);
|
|
|
115 |
}
|
|
|
116 |
|
|
|
117 |
bool FIRCLSUnwindWithFramePointer(FIRCLSThreadContext* registers, bool allowScanning) {
|
|
|
118 |
// Here's an interesting case. We've just processed the first frame, and it did
|
|
|
119 |
// not have any unwind info. If that first function did not allocate
|
|
|
120 |
// a stack frame, we'll "skip" the caller. This might sound unlikely, but it actually
|
|
|
121 |
// happens a lot in practice.
|
|
|
122 |
|
|
|
123 |
// Sooo, one thing we can do is try to stack the stack for things that look like return
|
|
|
124 |
// addresses. Normally, this technique will hit many false positives. But, if we do it
|
|
|
125 |
// only for the second frame, and only when we don't have other unwind info available.
|
|
|
126 |
|
|
|
127 |
if (allowScanning) {
|
|
|
128 |
FIRCLSSDKLogInfo("Attempting stack scan\n");
|
|
|
129 |
if (FIRCLSUnwindWithStackScanning(registers)) {
|
|
|
130 |
FIRCLSSDKLogInfo("Stack scan successful\n");
|
|
|
131 |
return true;
|
|
|
132 |
}
|
|
|
133 |
}
|
|
|
134 |
|
|
|
135 |
// If we ever do anything else with the encoding, we need to be sure
|
|
|
136 |
// to set it up right.
|
|
|
137 |
return FIRCLSCompactUnwindBPFrame(CLS_X86_MODE_BP_FRAME, registers);
|
|
|
138 |
}
|
|
|
139 |
|
|
|
140 |
uintptr_t FIRCLSUnwindStackPointerFromFramePointer(uintptr_t framePtr) {
|
|
|
141 |
// the stack pointer is the frame pointer plus the two saved pointers for the frame
|
|
|
142 |
return framePtr + 2 * sizeof(void*);
|
|
|
143 |
}
|
|
|
144 |
|
|
|
145 |
#if CLS_COMPACT_UNWINDING_SUPPORTED || CLS_DWARF_UNWINDING_SUPPORTED
|
|
|
146 |
uintptr_t FIRCLSDwarfUnwindGetRegisterValue(const FIRCLSThreadContext* registers, uint64_t num) {
|
|
|
147 |
switch (num) {
|
|
|
148 |
#if CLS_CPU_X86_64
|
|
|
149 |
case CLS_DWARF_X86_64_RAX:
|
|
|
150 |
return registers->__ss.__rax;
|
|
|
151 |
case CLS_DWARF_X86_64_RDX:
|
|
|
152 |
return registers->__ss.__rdx;
|
|
|
153 |
case CLS_DWARF_X86_64_RCX:
|
|
|
154 |
return registers->__ss.__rcx;
|
|
|
155 |
case CLS_DWARF_X86_64_RBX:
|
|
|
156 |
return registers->__ss.__rbx;
|
|
|
157 |
case CLS_DWARF_X86_64_RSI:
|
|
|
158 |
return registers->__ss.__rsi;
|
|
|
159 |
case CLS_DWARF_X86_64_RDI:
|
|
|
160 |
return registers->__ss.__rdi;
|
|
|
161 |
case CLS_DWARF_X86_64_RBP:
|
|
|
162 |
return registers->__ss.__rbp;
|
|
|
163 |
case CLS_DWARF_X86_64_RSP:
|
|
|
164 |
return registers->__ss.__rsp;
|
|
|
165 |
case CLS_DWARF_X86_64_R8:
|
|
|
166 |
return registers->__ss.__r8;
|
|
|
167 |
case CLS_DWARF_X86_64_R9:
|
|
|
168 |
return registers->__ss.__r9;
|
|
|
169 |
case CLS_DWARF_X86_64_R10:
|
|
|
170 |
return registers->__ss.__r10;
|
|
|
171 |
case CLS_DWARF_X86_64_R11:
|
|
|
172 |
return registers->__ss.__r11;
|
|
|
173 |
case CLS_DWARF_X86_64_R12:
|
|
|
174 |
return registers->__ss.__r12;
|
|
|
175 |
case CLS_DWARF_X86_64_R13:
|
|
|
176 |
return registers->__ss.__r13;
|
|
|
177 |
case CLS_DWARF_X86_64_R14:
|
|
|
178 |
return registers->__ss.__r14;
|
|
|
179 |
case CLS_DWARF_X86_64_R15:
|
|
|
180 |
return registers->__ss.__r15;
|
|
|
181 |
case CLS_DWARF_X86_64_RET_ADDR:
|
|
|
182 |
return registers->__ss.__rip;
|
|
|
183 |
#elif CLS_CPU_I386
|
|
|
184 |
case CLS_DWARF_X86_EAX:
|
|
|
185 |
return registers->__ss.__eax;
|
|
|
186 |
case CLS_DWARF_X86_ECX:
|
|
|
187 |
return registers->__ss.__ecx;
|
|
|
188 |
case CLS_DWARF_X86_EDX:
|
|
|
189 |
return registers->__ss.__edx;
|
|
|
190 |
case CLS_DWARF_X86_EBX:
|
|
|
191 |
return registers->__ss.__ebx;
|
|
|
192 |
case CLS_DWARF_X86_EBP:
|
|
|
193 |
return registers->__ss.__ebp;
|
|
|
194 |
case CLS_DWARF_X86_ESP:
|
|
|
195 |
return registers->__ss.__esp;
|
|
|
196 |
case CLS_DWARF_X86_ESI:
|
|
|
197 |
return registers->__ss.__esi;
|
|
|
198 |
case CLS_DWARF_X86_EDI:
|
|
|
199 |
return registers->__ss.__edi;
|
|
|
200 |
case CLS_DWARF_X86_RET_ADDR:
|
|
|
201 |
return registers->__ss.__eip;
|
|
|
202 |
#endif
|
|
|
203 |
default:
|
|
|
204 |
break;
|
|
|
205 |
}
|
|
|
206 |
|
|
|
207 |
FIRCLSSDKLog("Error: Unrecognized get register number %llu\n", num);
|
|
|
208 |
|
|
|
209 |
return 0;
|
|
|
210 |
}
|
|
|
211 |
|
|
|
212 |
bool FIRCLSDwarfUnwindSetRegisterValue(FIRCLSThreadContext* registers,
|
|
|
213 |
uint64_t num,
|
|
|
214 |
uintptr_t value) {
|
|
|
215 |
switch (num) {
|
|
|
216 |
#if CLS_CPU_X86_64
|
|
|
217 |
case CLS_DWARF_X86_64_RAX:
|
|
|
218 |
registers->__ss.__rax = value;
|
|
|
219 |
return true;
|
|
|
220 |
case CLS_DWARF_X86_64_RDX:
|
|
|
221 |
registers->__ss.__rdx = value;
|
|
|
222 |
return true;
|
|
|
223 |
case CLS_DWARF_X86_64_RCX:
|
|
|
224 |
registers->__ss.__rcx = value;
|
|
|
225 |
return true;
|
|
|
226 |
case CLS_DWARF_X86_64_RBX:
|
|
|
227 |
registers->__ss.__rbx = value;
|
|
|
228 |
return true;
|
|
|
229 |
case CLS_DWARF_X86_64_RSI:
|
|
|
230 |
registers->__ss.__rsi = value;
|
|
|
231 |
return true;
|
|
|
232 |
case CLS_DWARF_X86_64_RDI:
|
|
|
233 |
registers->__ss.__rdi = value;
|
|
|
234 |
return true;
|
|
|
235 |
case CLS_DWARF_X86_64_RBP:
|
|
|
236 |
registers->__ss.__rbp = value;
|
|
|
237 |
return true;
|
|
|
238 |
case CLS_DWARF_X86_64_RSP:
|
|
|
239 |
registers->__ss.__rsp = value;
|
|
|
240 |
return true;
|
|
|
241 |
case CLS_DWARF_X86_64_R8:
|
|
|
242 |
registers->__ss.__r8 = value;
|
|
|
243 |
return true;
|
|
|
244 |
case CLS_DWARF_X86_64_R9:
|
|
|
245 |
registers->__ss.__r9 = value;
|
|
|
246 |
return true;
|
|
|
247 |
case CLS_DWARF_X86_64_R10:
|
|
|
248 |
registers->__ss.__r10 = value;
|
|
|
249 |
return true;
|
|
|
250 |
case CLS_DWARF_X86_64_R11:
|
|
|
251 |
registers->__ss.__r11 = value;
|
|
|
252 |
return true;
|
|
|
253 |
case CLS_DWARF_X86_64_R12:
|
|
|
254 |
registers->__ss.__r12 = value;
|
|
|
255 |
return true;
|
|
|
256 |
case CLS_DWARF_X86_64_R13:
|
|
|
257 |
registers->__ss.__r13 = value;
|
|
|
258 |
return true;
|
|
|
259 |
case CLS_DWARF_X86_64_R14:
|
|
|
260 |
registers->__ss.__r14 = value;
|
|
|
261 |
return true;
|
|
|
262 |
case CLS_DWARF_X86_64_R15:
|
|
|
263 |
registers->__ss.__r15 = value;
|
|
|
264 |
return true;
|
|
|
265 |
case CLS_DWARF_X86_64_RET_ADDR:
|
|
|
266 |
registers->__ss.__rip = value;
|
|
|
267 |
return true;
|
|
|
268 |
#elif CLS_CPU_I386
|
|
|
269 |
case CLS_DWARF_X86_EAX:
|
|
|
270 |
registers->__ss.__eax = value;
|
|
|
271 |
return true;
|
|
|
272 |
case CLS_DWARF_X86_ECX:
|
|
|
273 |
registers->__ss.__ecx = value;
|
|
|
274 |
return true;
|
|
|
275 |
case CLS_DWARF_X86_EDX:
|
|
|
276 |
registers->__ss.__edx = value;
|
|
|
277 |
return true;
|
|
|
278 |
case CLS_DWARF_X86_EBX:
|
|
|
279 |
registers->__ss.__ebx = value;
|
|
|
280 |
return true;
|
|
|
281 |
case CLS_DWARF_X86_EBP:
|
|
|
282 |
registers->__ss.__ebp = value;
|
|
|
283 |
return true;
|
|
|
284 |
case CLS_DWARF_X86_ESP:
|
|
|
285 |
registers->__ss.__esp = value;
|
|
|
286 |
return true;
|
|
|
287 |
case CLS_DWARF_X86_ESI:
|
|
|
288 |
registers->__ss.__esi = value;
|
|
|
289 |
return true;
|
|
|
290 |
case CLS_DWARF_X86_EDI:
|
|
|
291 |
registers->__ss.__edi = value;
|
|
|
292 |
return true;
|
|
|
293 |
case CLS_DWARF_X86_RET_ADDR:
|
|
|
294 |
registers->__ss.__eip = value;
|
|
|
295 |
return true;
|
|
|
296 |
#endif
|
|
|
297 |
default:
|
|
|
298 |
break;
|
|
|
299 |
}
|
|
|
300 |
|
|
|
301 |
FIRCLSSDKLog("Unrecognized set register number %llu\n", num);
|
|
|
302 |
|
|
|
303 |
return false;
|
|
|
304 |
}
|
|
|
305 |
#endif
|
|
|
306 |
|
|
|
307 |
#if CLS_COMPACT_UNWINDING_SUPPORTED
|
|
|
308 |
bool FIRCLSCompactUnwindComputeStackSize(const compact_unwind_encoding_t encoding,
|
|
|
309 |
const uintptr_t functionStart,
|
|
|
310 |
const bool indirect,
|
|
|
311 |
uint32_t* const stackSize) {
|
|
|
312 |
if (!FIRCLSIsValidPointer(stackSize)) {
|
|
|
313 |
FIRCLSSDKLog("Error: invalid inputs\n");
|
|
|
314 |
return false;
|
|
|
315 |
}
|
|
|
316 |
|
|
|
317 |
const uint32_t stackSizeEncoded = GET_BITS_WITH_MASK(encoding, CLS_X86_FRAMELESS_STACK_SIZE);
|
|
|
318 |
|
|
|
319 |
if (!indirect) {
|
|
|
320 |
*stackSize = stackSizeEncoded * sizeof(void*);
|
|
|
321 |
return true;
|
|
|
322 |
}
|
|
|
323 |
|
|
|
324 |
const vm_address_t sublAddress = functionStart + stackSizeEncoded;
|
|
|
325 |
uint32_t sublValue = 0;
|
|
|
326 |
|
|
|
327 |
if (!FIRCLSReadMemory(sublAddress, &sublValue, sizeof(uint32_t))) {
|
|
|
328 |
FIRCLSSDKLog("Error: unable to read subl value\n");
|
|
|
329 |
return false;
|
|
|
330 |
}
|
|
|
331 |
|
|
|
332 |
const uint32_t stackAdjust = GET_BITS_WITH_MASK(encoding, CLS_X86_FRAMELESS_STACK_ADJUST);
|
|
|
333 |
|
|
|
334 |
*stackSize = sublValue + stackAdjust * sizeof(void*);
|
|
|
335 |
|
|
|
336 |
return true;
|
|
|
337 |
}
|
|
|
338 |
|
|
|
339 |
bool FIRCLSCompactUnwindDecompressPermutation(const compact_unwind_encoding_t encoding,
|
|
|
340 |
uintptr_t permutatedRegisters[const static 6]) {
|
|
|
341 |
const uint32_t regCount = GET_BITS_WITH_MASK(encoding, CLS_X86_FRAMELESS_STACK_REG_COUNT);
|
|
|
342 |
uint32_t permutation = GET_BITS_WITH_MASK(encoding, CLS_X86_FRAMELESS_STACK_REG_PERMUTATION);
|
|
|
343 |
|
|
|
344 |
switch (regCount) {
|
|
|
345 |
case 6:
|
|
|
346 |
permutatedRegisters[0] = permutation / 120;
|
|
|
347 |
permutation -= (permutatedRegisters[0] * 120);
|
|
|
348 |
permutatedRegisters[1] = permutation / 24;
|
|
|
349 |
permutation -= (permutatedRegisters[1] * 24);
|
|
|
350 |
permutatedRegisters[2] = permutation / 6;
|
|
|
351 |
permutation -= (permutatedRegisters[2] * 6);
|
|
|
352 |
permutatedRegisters[3] = permutation / 2;
|
|
|
353 |
permutation -= (permutatedRegisters[3] * 2);
|
|
|
354 |
permutatedRegisters[4] = permutation;
|
|
|
355 |
permutatedRegisters[5] = 0;
|
|
|
356 |
break;
|
|
|
357 |
case 5:
|
|
|
358 |
permutatedRegisters[0] = permutation / 120;
|
|
|
359 |
permutation -= (permutatedRegisters[0] * 120);
|
|
|
360 |
permutatedRegisters[1] = permutation / 24;
|
|
|
361 |
permutation -= (permutatedRegisters[1] * 24);
|
|
|
362 |
permutatedRegisters[2] = permutation / 6;
|
|
|
363 |
permutation -= (permutatedRegisters[2] * 6);
|
|
|
364 |
permutatedRegisters[3] = permutation / 2;
|
|
|
365 |
permutation -= (permutatedRegisters[3] * 2);
|
|
|
366 |
permutatedRegisters[4] = permutation;
|
|
|
367 |
break;
|
|
|
368 |
case 4:
|
|
|
369 |
permutatedRegisters[0] = permutation / 60;
|
|
|
370 |
permutation -= (permutatedRegisters[0] * 60);
|
|
|
371 |
permutatedRegisters[1] = permutation / 12;
|
|
|
372 |
permutation -= (permutatedRegisters[1] * 12);
|
|
|
373 |
permutatedRegisters[2] = permutation / 3;
|
|
|
374 |
permutation -= (permutatedRegisters[2] * 3);
|
|
|
375 |
permutatedRegisters[3] = permutation;
|
|
|
376 |
break;
|
|
|
377 |
case 3:
|
|
|
378 |
permutatedRegisters[0] = permutation / 20;
|
|
|
379 |
permutation -= (permutatedRegisters[0] * 20);
|
|
|
380 |
permutatedRegisters[1] = permutation / 4;
|
|
|
381 |
permutation -= (permutatedRegisters[1] * 4);
|
|
|
382 |
permutatedRegisters[2] = permutation;
|
|
|
383 |
break;
|
|
|
384 |
case 2:
|
|
|
385 |
permutatedRegisters[0] = permutation / 5;
|
|
|
386 |
permutation -= (permutatedRegisters[0] * 5);
|
|
|
387 |
permutatedRegisters[1] = permutation;
|
|
|
388 |
break;
|
|
|
389 |
case 1:
|
|
|
390 |
permutatedRegisters[0] = permutation;
|
|
|
391 |
break;
|
|
|
392 |
case 0:
|
|
|
393 |
break;
|
|
|
394 |
default:
|
|
|
395 |
FIRCLSSDKLog("Error: unhandled number of register permutations for encoding %x\n", encoding);
|
|
|
396 |
return false;
|
|
|
397 |
}
|
|
|
398 |
|
|
|
399 |
return true;
|
|
|
400 |
}
|
|
|
401 |
|
|
|
402 |
bool FIRCLSCompactUnwindRemapRegisters(const compact_unwind_encoding_t encoding,
|
|
|
403 |
uintptr_t permutatedRegisters[const static 6],
|
|
|
404 |
uintptr_t savedRegisters[const static 6]) {
|
|
|
405 |
const uint32_t regCount = GET_BITS_WITH_MASK(encoding, CLS_X86_FRAMELESS_STACK_REG_COUNT);
|
|
|
406 |
|
|
|
407 |
if (regCount > 6) {
|
|
|
408 |
FIRCLSSDKLog("Error: invalid register number count %d\n", regCount);
|
|
|
409 |
return false;
|
|
|
410 |
}
|
|
|
411 |
|
|
|
412 |
// Re-number the registers
|
|
|
413 |
|
|
|
414 |
// You are probably wondering, what the hell is this algorithm even doing? It is
|
|
|
415 |
// taken from libunwind's implemenation that does the same thing.
|
|
|
416 |
bool used[7] = {false, false, false, false, false, false, false};
|
|
|
417 |
for (uint32_t i = 0; i < regCount; ++i) {
|
|
|
418 |
int renum = 0;
|
|
|
419 |
for (int u = 1; u < 7; ++u) {
|
|
|
420 |
if (!used[u]) {
|
|
|
421 |
if (renum == permutatedRegisters[i]) {
|
|
|
422 |
savedRegisters[i] = u;
|
|
|
423 |
used[u] = true;
|
|
|
424 |
break;
|
|
|
425 |
}
|
|
|
426 |
++renum;
|
|
|
427 |
}
|
|
|
428 |
}
|
|
|
429 |
}
|
|
|
430 |
|
|
|
431 |
return true;
|
|
|
432 |
}
|
|
|
433 |
|
|
|
434 |
bool FIRCLSCompactUnwindRestoreRegisters(compact_unwind_encoding_t encoding,
|
|
|
435 |
FIRCLSThreadContext* registers,
|
|
|
436 |
uint32_t stackSize,
|
|
|
437 |
const uintptr_t savedRegisters[const static 6],
|
|
|
438 |
uintptr_t* address) {
|
|
|
439 |
if (!FIRCLSIsValidPointer(registers) || !FIRCLSIsValidPointer(address)) {
|
|
|
440 |
FIRCLSSDKLog("Error: invalid inputs\n");
|
|
|
441 |
return false;
|
|
|
442 |
}
|
|
|
443 |
|
|
|
444 |
const uint32_t regCount = GET_BITS_WITH_MASK(encoding, CLS_X86_FRAMELESS_STACK_REG_COUNT);
|
|
|
445 |
|
|
|
446 |
// compute initial address of saved registers
|
|
|
447 |
*address = FIRCLSThreadContextGetStackPointer(registers) + stackSize - sizeof(void*) -
|
|
|
448 |
sizeof(void*) * regCount;
|
|
|
449 |
uintptr_t value = 0;
|
|
|
450 |
|
|
|
451 |
for (uint32_t i = 0; i < regCount; ++i) {
|
|
|
452 |
value = 0;
|
|
|
453 |
|
|
|
454 |
switch (savedRegisters[i]) {
|
|
|
455 |
case CLS_X86_REG_RBP:
|
|
|
456 |
if (!FIRCLSReadMemory((vm_address_t)*address, (void*)&value, sizeof(uintptr_t))) {
|
|
|
457 |
FIRCLSSDKLog("Error: unable to read memory to set register\n");
|
|
|
458 |
return false;
|
|
|
459 |
}
|
|
|
460 |
|
|
|
461 |
if (!FIRCLSThreadContextSetFramePointer(registers, value)) {
|
|
|
462 |
FIRCLSSDKLog("Error: unable to set FP\n");
|
|
|
463 |
return false;
|
|
|
464 |
}
|
|
|
465 |
break;
|
|
|
466 |
default:
|
|
|
467 |
// here, we are restoring a register we don't need for unwinding
|
|
|
468 |
FIRCLSSDKLog("Error: skipping a restore of register %d at %p\n", (int)savedRegisters[i],
|
|
|
469 |
(void*)*address);
|
|
|
470 |
break;
|
|
|
471 |
}
|
|
|
472 |
|
|
|
473 |
*address += sizeof(void*);
|
|
|
474 |
}
|
|
|
475 |
|
|
|
476 |
return true;
|
|
|
477 |
}
|
|
|
478 |
|
|
|
479 |
static bool FIRCLSCompactUnwindFrameless(compact_unwind_encoding_t encoding,
|
|
|
480 |
FIRCLSThreadContext* registers,
|
|
|
481 |
uintptr_t functionStart,
|
|
|
482 |
bool indirect) {
|
|
|
483 |
FIRCLSSDKLog("Frameless unwind encountered with encoding %x\n", encoding);
|
|
|
484 |
|
|
|
485 |
uint32_t stackSize = 0;
|
|
|
486 |
if (!FIRCLSCompactUnwindComputeStackSize(encoding, functionStart, indirect, &stackSize)) {
|
|
|
487 |
FIRCLSSDKLog("Error: unable to compute stack size for encoding %x\n", encoding);
|
|
|
488 |
return false;
|
|
|
489 |
}
|
|
|
490 |
|
|
|
491 |
uintptr_t permutatedRegisters[6];
|
|
|
492 |
|
|
|
493 |
memset(permutatedRegisters, 0, sizeof(permutatedRegisters));
|
|
|
494 |
if (!FIRCLSCompactUnwindDecompressPermutation(encoding, permutatedRegisters)) {
|
|
|
495 |
FIRCLSSDKLog("Error: unable to decompress registers %x\n", encoding);
|
|
|
496 |
return false;
|
|
|
497 |
}
|
|
|
498 |
|
|
|
499 |
uintptr_t savedRegisters[6];
|
|
|
500 |
|
|
|
501 |
memset(savedRegisters, 0, sizeof(savedRegisters));
|
|
|
502 |
if (!FIRCLSCompactUnwindRemapRegisters(encoding, permutatedRegisters, savedRegisters)) {
|
|
|
503 |
FIRCLSSDKLog("Error: unable to remap registers %x\n", encoding);
|
|
|
504 |
return false;
|
|
|
505 |
}
|
|
|
506 |
|
|
|
507 |
uintptr_t address = 0;
|
|
|
508 |
|
|
|
509 |
if (!FIRCLSCompactUnwindRestoreRegisters(encoding, registers, stackSize, savedRegisters,
|
|
|
510 |
&address)) {
|
|
|
511 |
FIRCLSSDKLog("Error: unable to restore registers\n");
|
|
|
512 |
return false;
|
|
|
513 |
}
|
|
|
514 |
|
|
|
515 |
FIRCLSSDKLog("SP is %p and we are reading %p\n",
|
|
|
516 |
(void*)FIRCLSThreadContextGetStackPointer(registers), (void*)address);
|
|
|
517 |
// read the value from the stack, now that we know the address to read
|
|
|
518 |
uintptr_t value = 0;
|
|
|
519 |
if (!FIRCLSReadMemory((vm_address_t)address, (void*)&value, sizeof(uintptr_t))) {
|
|
|
520 |
FIRCLSSDKLog("Error: unable to read memory to set register\n");
|
|
|
521 |
return false;
|
|
|
522 |
}
|
|
|
523 |
|
|
|
524 |
FIRCLSSDKLog("Read PC to be %p\n", (void*)value);
|
|
|
525 |
if (!FIRCLSIsValidPointer(value)) {
|
|
|
526 |
FIRCLSSDKLog("Error: computed PC is invalid\n");
|
|
|
527 |
return false;
|
|
|
528 |
}
|
|
|
529 |
|
|
|
530 |
return FIRCLSThreadContextSetPC(registers, value) &&
|
|
|
531 |
FIRCLSThreadContextSetStackPointer(registers, address + sizeof(void*));
|
|
|
532 |
}
|
|
|
533 |
#endif
|
|
|
534 |
|
|
|
535 |
#else
|
|
|
536 |
INJECT_STRIP_SYMBOL(unwind_x86)
|
|
|
537 |
#endif
|